
Exploiting Race
Condition
Vulnerabilities in Web
Applications
Javan Rasokat – Application Security
Specialist - Sage

whoami

● Senior Application Security Specialist at Sage

● Ex-Pentester

● Lecturer for Secure Coding at DHBW University,
Germany

● M. Sc. IT Security Management at Aalen University
(Germany), CISSP, CCSP, CSSLP, GIAC GXPN

● Open Source Projects -
https://github.com/JavanXD

Javan Rasokat

https://github.com/JavanXD

Agenda
● Theory

○ What are Race Conditions?

○ Examples

○ Vulnerable PHP Code Snippet

● Vulnerable web app

○ Race condition attack scenarios

○ Secure-SDLC practices

● Attack tool

○ Proposed architecture

○ Research results

● Live Demo

● Conclusion

Theory

Race Condition – What?

„A race condition is a flaw that produces an unexpected result when the timing
of actions impact other actions.
An example may be seen on a multithreaded application where actions are
being performed on the same data.
Race conditions, by their very nature, are difficult to test for.” OWASP [Fou09b]

„Research Gap” MITRE [Cor06a]

Race Condition – Again, what?

Multiple threads access shared code, variables, or data simultaneously.

[Pan16]

Knock Knock
Race Condition!
Race Condition!
Race Condition!
Who is there?

Why do I need to care?

For any actions on your application that may only be allowed to be performed
in limited numbers.
● Bypassing anti-brute force mechanisms (e.g., login mechanism).
● Overdrawing limits (e.g., bank account).
● Multiple voting (e.g., online surveys).
● Multiple execution of transfers.
● Generation and redemption of coupon or discount codes.
● Anti-cross-site request forgery (CSRF) tokens.

There are plenty of other scenarios…

Examples

[Mut21b][Osp21]

Can you spot the race condition?

● Similar code samples can be found in the official PHP-Docs [Ras21]
● several processes could access the resource 'credit' at the same time
→ How to fix it?
● Lock before line 2 and an unlock after line 6

○ No other thread can access or tamper the values

● Append the condition to the UPDATE: ‘AND credit=$row[‘credit’]’
○ You don’t update the column ‘credit’ if it got tampered

● Use a ‘SELECT FOR UPDATE’ statement if possible

△t = race window [ms]

Vulnerable web app

3 Attack scenarios

… inspired by real attack scenarios:

● Challenge 1: Bank transfer / withdraw money
○ CVSS Base Score: 6.5 (Medium)

● Challenge 2: Vote submission / "Like" indication
○ CVSS Base Score: 6.5 (Medium)

● Challenge 3: Login using 2-factor authentication
○ CVSS Base Score: 7.5 (High)

Try it by your own

● Open Source on GitHub
● PHP, MariaDB, Docker

Compose

https://github.com/JavanXD/Raceocat/

https://github.com/JavanXD/Raceocat/tree/master/vuln-webapp

Can we detect or prevent Race Conditions?

● Do any of our Secure-SDLC
practices help?

● I tried hard….
○ WAF, RASP, SAST, DAST

Conclusion:
● Race condition vulnerabilities

go undetected and are
exploited despite the
deployed in-depth measures. [Ras21]

Attack tool

Current attack tool landscape

● Tools: rc-exploit (2015), Race-the-Web (2016), RacePWN (2017), Sakurity
Racer (2017), Burp Turbo Intruder

● Two types of sending parallel requests
○ Parallel

■ Each HTTP-Request in its own connection
■ Often last Byte of the HTTP chunk is sent delayed (“Last Byte-Sync”) [LB17]

○ Pipeline
■ Glue multiple HTTP-Requests into one TCP frame/connection

● curl
○ Instead of chaining multiple curl requests (curl & curl & curl…)
○ You can use –parallel/-z and –next flag which got introduced in 2019 with v 7.68.0 [Ste19]

Proposed attack tool architecture

[Ras21]

Research
Origin and Timestamp of HTTP-Requests Time Distribution and Origin of HTTP-Requests

Seconds Point of time of entries (grouped to 50ms interval) [s]

Am
ou

nt
 o

f e
nt

rie
s

[Ras21]
Test case: 1.92ms average elapse between processed requests.

Demo time!

Demo

Conclusion

Conclusion

● Testing needs a good understanding of your business logic
● Sometimes the only way to find them… is a pentest

○ Secure-SDLC practices have not proved to be helpful
○ Spread awareness, include it in your pentesting scope

● Still as mentioned by MITRE a “research gap” [Cor06a]
● Use a distributed attack architecture

○ Find the proposed tool on GitHub: https://github.com/JavanXD/Raceocat/

https://github.com/JavanXD/Raceocat/

Thank You!

Bibliography
● [Cor06a] MITRE Corporation. CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization (’Race

Condition’). MITRE, CWE-ID CWE- 362. July 2006. url: https://cwe.mitre.org/data/definitions/362.html
● [Fou09b] OWASP Foundation. Testing for Race Conditions (OWASP-AT-010). 2009. url:

https://www.owasp.org/index.php/Testing_for_Race_Conditions_(OWASP-AT-010)
● [Hna17b] Aaron Hnatiw. „Racing The Web - Slides“. In: Hackfest, June 2017. url:

https://www.slideshare.net/AaronHnatiw/racing-the-web-hackfest-2016
● [LB17] Anton Lopanitsyn und Michail Badin. RacePWN (Race Condition Frame- work). 2017. url:

https://github.com/racepwn/racepwn#readme
● [Mut21b] Laxman Muthiyah. How I Might Have Hacked Any Microsoft Account. March 2021. url:

https://thezerohack.com/how-i-might-have-hacked-any-microsoft-account
● [Osp21] Tobias Ospelt. Password reset code brute-force vulnerability in AWS Cognito. Pentagrid. April 2021. url:

https://www.pentagrid.ch/en/blog/password-reset-code-brute-force-vulnerability-in-AWS-Cognito/
● [Pan16] Sarvesh Pandey. Testing Race Conditions in Web Applications. June 2016. url:

https://www.mcafee.com/blogs/technical-how-to/testing-race-conditions-web-applications/
● [Ras21] Javan Rasokat. Master thesis "Race Conditions in Webanwendungen”. August 2021. url: https://opus-htw-aalen.bsz-

bw.de/frontdoor/deliver/index/docId/1327/file/Rasokat-Race_Conditions_in_Webanwendungen.pdf
● [Ste19] Daniel Stenberg. curl goez parallel. July 2019. url: https://daniel.haxx.se/blog/2019/07/22/curl-goez-parallel/

Backup slides

