
Ali Abdollahi | Security engineer | Picnic Technologies B.V.
1

API Security in the Age of Microservices

Agenda

2

1. Overview of microservices architecture components

2. API/microservice-related incidents

3. API vulnerabilities overview

4. Microservices security challenges

5. Security best practices

6. Recap

#Whoami

§ Security enthusiast with over 11 years of experience

§ Doing security stuff at Picnic Technologies B.V.

§ A regular speaker at industry conferences e.g. DefCon3x,

Security Bsides6x, Confidence, LeHack, Hacktivity, OWASP

global AppSec, IEEE AI/ML, NoNameCon, COSAC, c0c0n,

ISACA Euro CACS/CSX and …

3

Overview of microservices architecture components

4

Overview of microservices architecture components

API gateways

• Centralized API entry point
• Manages routing and load balancing
• Enforces security policies
• Monitors API activity
• Simplifies API management

5

Overview of microservices architecture components

Service Mesh

• Network infrastructure layer
• Facilitates service-to-service communication
• Implements traffic management and resiliency
• Provides observability and monitoring
• Handles service-to-service authentication and encryption

6

Overview of microservices architecture components

Container orchestrators

• Manages container deployment and scaling
• Automates container lifecycle management
• Ensures high availability and fault tolerance
• Handles load balancing and networking
• Provides monitoring and logging capabilities

7

8

Security incidents ‘Real-world examples’

Real-world examples

Uber data breach (2016)

Vector:
Github repo

AWS API keys

S3 bucket

9

T-Mobile data breach (2018)

Vector:
T-Mobile's customer support
staff API

Typeform (2018) Facebook Data Leak (2019)

Shopify (2020)

Panera Bread Data Leak (2018)

API vulnerabilities/attacks

10

OWASP API Top 10 Example of API Attack/Vulnerability

API1 Broken Object Level
Authorization Unauthorized access to user records, modifying object properties

API2
Broken User Authentication Credential stuffing, session hijacking

API3
Excessive Data Exposure Exposing sensitive user data, leaking API keys

API4 Lack of Resources & Rate
Limiting Brute force attacks, denial of service

API5 Broken Function Level
Authorization Accessing restricted resources or performing unauthorized actions

API6 Mass Assignment Modifying unintended object properties

API7 Security Misconfiguration Default configurations, improper error handling

API8 Injection SQL injection, NoSQL injection

API9 Improper Assets Management Exposing sensitive endpoints, outdated documentation

API10 Insufficient Logging &
Monitoring Delayed detection or response to security incidents

Microservices Security Challenges

Increased attack surface

11

Microservices Security Challenges

Multiple APIs and Services

1. More endpoints, multiple APIs, and services = Larger attack

surface and an increasing number of vulnerabilities and risks.

2. Complexity in management and addressing security gaps.

3. Multiple APIs and services = Misconfigured security settings,

weak authentication mechanisms, and insufficient access
controls.

4. Insecure service-to-service communications = Data leakage,

man-in-the-middle attacks, and unauthorized access.

12

Microservices Security Challenges

Unique security vulnerabilities

13

Microservices Security Challenges

API gateway misconfigurations

• Weak authentication and authorization policies
• Improper rate limiting and IP filtering
• Insufficient CORS management

14

Weak authentication and authorization policies

15

Ø Poorly implemented authentication and authorization
mechanisms, which may allow unauthorized users to access or
manipulate API resources.

Ø Scenario:
An attacker exploits weak authentication by brute-forcing
credentials or exploiting a known vulnerability in the
authentication mechanism, gaining unauthorized access to
sensitive data or administrative privileges.

Improper rate limiting and IP filtering

16

Ø Insufficient or missing rate limiting and IP filtering measures,
which can leave the API susceptible to abuse and denial-of-service
(DoS) attacks.

Ø Scenario:
An attacker initiates a distributed denial of service attack by
sending a large number of queries to the API, crushing the server
and causing the service to be degraded or unavailable to
legitimate users.

Insufficient CORS management

17

Ø Incorrect configuration of Cross-Origin Resource Sharing (CORS)
policies, potentially allowing unauthorized domains to access or
interact with the API.

Ø Scenario:
An attacker crafts a malicious website that sends requests to the
API servers from an unauthorized domain. Due to misconfigured
CORS, the attacker can access sensitive data from the API server or
perform unauthorized actions on behalf of users who visit the
malicious website.

Microservices Security Challenges

Service mesh vulnerabilities

• Misconfigured security policies
• Insecure service-to-service authentication
• Weak data encryption in transit

18

Misconfigured security policies

19

Ø Incorrectly configured or missing security policies in the
service mesh, such as exposing internal APIs to the public
internet as a result of insecure traffic routing rules or
incorrectly configured ingress rules, make services vulnerable
to attacks.

Ø Scenario:
An attacker exploits the misconfigured ingress rule in a service mesh to send
malicious requests or access sensitive data from an exposed service.

Weak data encryption in transit

20

Ø Insufficient or missing encryption of data transmitted between
services in the service mesh, such as using outdated
encryption algorithms or failing to implement mTLS, can lead
to data leakage or interception.

Ø Scenario:
An attacker infiltrates the service mesh network and
intercepts unencrypted communication between services,
exploiting an outdated, vulnerable encryption algorithm (e.g.,
small key size RSA). This allows data access or manipulation,
risking breaches or service disruptions.

Securing APIs in Microservices (Best Practices)

Implement strong authentication and authorization:

21

Implement strong authentication and authorization

Secure API gateway layer

• A centralized entry point for managing API requests
• Handles authentication, authorization, and rate limiting
• Facilitates communication between external clients and

microservices
• Provides monitoring, logging, and security features

22

Implement strong authentication and authorization

OAuth 2.0

• Centralized authorization framework
• Uses access tokens for API access
• Supports multiple grant types

23

Implement strong authentication and authorization

JWT

• Lightweight, web-friendly token structure
• Encodes claims as JSON object
• Signed using a digital signature or HMAC

24

Implement strong authentication and authorization

OIDC (OpenID Connect)

• Authentication layer built on OAuth 2.0
• Provides user identity information
• Utilizes ID tokens (JWT format)

25

Service-to-service authentication and encryption

Mutual TLS (mTLS):
• Two-way authentication between client and server

• Verifies client and server certificates

• Strengthens security for inter-service communication

• Protects data in transit from eavesdropping and tampering

26

Service-to-service authentication and encryption

More examples:
• Utilize Istio for secure service communication.

• Data encryption with modern algorithms

• Use VPN/IPSec for secure service connections.

27

e.g. Istio, Linkerd

https://linkerd.io/
https://istio.io/

Anomaly detection

• Spike detection
• Monitoring failed login attempts
• Geolocation analysis
• Monitoring unusual IP addresses
• Request payload analysis

28

Network Segmentation

• Cloud Security Groups: Restrict access and manage traffic between

microservices in cloud platforms (AWS, GCP, Azure).

• Kubernetes Policies: Limit access between pods within a Kubernetes

namespace.

• Network VLANs: Establish isolated virtual networks to separate different

microservices.

• Firewalls & NAT: Govern traffic across security zones and regulate access

to particular resources.

29

Recap

30

Secure
Design

Least
privilege

Defense
-in-

depth

Secure
Comm.

RBAC
OPA

API gateway

FW/IDPS

Data in
transit

Data at
rest

mTLS

TLS1.3
JWT (RS/ES256) RSA/ChaCha20

DB encryption

KMS

IAM

AuthN &
AuthZ

Secret &
key

mgmt

OAuth2.0
OIDC
JWT

AWS Secret Manager

Vault

https://www.hashicorp.com/products/vault
https://www.openpolicyagent.org/

Do not forget…

31

ü Security monitoring

ü SAST, DAST, and IAST

ü Periodic audit (Specifically on your cloud assets e.g. containers)

ü Hardening (Network and deployments)

ü Security frameworks e.g. OWASP API Security Top 10, NIST SP 800-204, etc.

https://csrc.nist.gov/publications/detail/sp/800-204/final
https://owasp.org/www-project-api-security/

Thank you!32

