
Ao Wang | Security Research Expert| DBAPPSecurity WeBin Lab
1

Resurrecting Zombies
Leveraging advanced techniques of DMA reentrancy to escape QEMU

2

Ao Wang (@arayz)

● Security research at DBAPPSecurity WeBin Lab

● Hunting and exploiting vulnerabilities in critical
products

● Mobile/Browser/Virtualization

● Pwned Safari for mutiple times with callback related
vulnerabilites

● Mainly focus on QEMU-KVM currently

3

Agenda

● Indroduce

● Challenges

● DMA Oriented Programing

● Exploitation

● DEMO Time

● Conclusion

4

Agenda

● Indroduce <<
● Challenges

● DMA Oriented Programing

● Exploitation

● DEMO Time

● Conclusion

5

Related Work

● BlackHat Asia 2022, Hunting and Exploiting Recursive
MMIO Flaws in QEMU/KVM

○ Root Cause
○ Hunting And Exploitation
○ Mitigation

● QEMU Community, Fix DMA MMIO reentrancy issues
○ Fundamentally solve DMA Reentrancy problem
○ Known vulnerabilities
○ Mostly found by fuzzing

6

DMA Reentrancy Issue

● Make destination of DMA operation overlaps with MMIO region of the
peripherals modules to invoke function call access to MMIO handlers

● Caused by difference of hypervisor and real hardware

● No defenses in the code of QEMU except for fixed vulnerabilities

● Hard to fix, still got some known vulnerabilities in latest version, and there
are still some hidden vulnerabilities

● 2 types of patches

● Besides QEMU, some other hypervisors may also be affected(VirtualBox)

● Most will crash with infinite reentrancy, there are prequesites for exploiting

7

Agenda

● Indroduce

● Challenges <<
● DMA Oriented Programing

● Exploitation

● DEMO Time

● Conclusion

8

Prerequesite - Case 1

Vulnerable Function

NULL Pointer Check

Recursion Condition

DMA Write

Free

Clear Ref

static Vulnerable Function()
{
 if (Ref(obj) == NULL) {
 return;
 }
 if (Recursion Condition) {
 DMA_Write();
 }
 Free(obj);
 Clear_Ref(obj);
};

9

Prerequesite - Case 1

Vulnerable Function

NULL Pointer Check

Recursion Condition

DMA Write

Free

Clear Pointer
Now we got an object that has been
already freed

Construct Primitives
● Make destination of DMA operation

overlaps with MMIO region of the device
● Re-enter the vulnerable function to free the

object twice
● Occupy the freed chunk to prevent crash

after exiting the re-entrancy

10

Prerequesite - Case 1
bool prepare_mmio_access(MemoryRegion *mr)
{
 bool release_lock = false;

 if (!qemu_mutex_iothread_locked()) {
 qemu_mutex_lock_iothread();
 release_lock = true;
 }
 if (mr->flush_coalesced_mmio) {
 qemu_flush_coalesced_mmio_buffer();
 }

 return release_lock;
}

● I/O thread is locked until
exiting MMIO handler

● With glibc 2.31+, each
thread corresponds to an
independent arena and
tcache

We can’t occupy the freed
chunk with another thread or
I/O request, we must do this
in the same DMA context
which triggers the
vulnerability

11

Prerequesite - Case 1

Vulnerable Function

NULL Pointer Check

Recursion Condition

DMA Write

Free

Clear Pointer

Exiting I/O context safely
● Occupy the obejct to prevent crash

● Change the recursion condition to prevent infinite

reentancy

Occupy the freed chunk stably
● Clear the tcache before re-enter the vulnerable function

Re-enter the vulnerable function to free the object

Some other necessary context settings also require
DMA Write Operations

12

Prerequesite - Case 1

Vulnerable Function

NULL Pointer Check

Recursion Condition

DMA Write

Free

Clear Pointer

We need more than 10 DMA write operations

before exiting the MMIO context

However, we usually only have one or two

chances of DMA writing

13

Prerequesite One:

Need Scatter-Gathered DMA Operations

14

Prerequesite - Case 2
static Vulnerable_Function(int* data)
{
 int* obj = GetFromContext();
 DMA_Write(data);
 Use(obj);
};

To trigger the UAF, we must leverage the DMA

Write Operation to send a specific value to the

specific handler of MMIO region and free the

object from the context

static Free_The_Object (int val)
{
 if (val & FREE_CONDITION_BIT) {
 Free(obj);
 }
}

The content of DMA write operation originally

sends to the guest can’t be controlled by the

guest

15

Prerequesite - Case 2

/**
 * pci_dma_write: Write to address space from PCI device.
 *
 * Return a MemTxResult indicating whether the operation succeeded
 * or failed (eg unassigned memory, device rejected the transaction,
 * IOMMU fault).
 *
 * @dev: #PCIDevice doing the memory access
 * @addr: address within the #PCIDevice address space
 * @buf: buffer with the data transferred
 * @len: the number of bytes to write
 */
static inline MemTxResult pci_dma_write(PCIDevice *dev, dma_addr_t
addr, const void *buf, dma_addr_t len)
{
 return pci_dma_rw(dev, addr, (void *) buf, len,
DMA_DIRECTION_FROM_DEVICE, MEMTXATTRS_UNSPECIFIED);
}

DMA Write Operation needs 3 paramters

to go:

● addr: Destination Address

● buf: Contents To Write

● len: Length Of Contents

To trigger the vulnerability or to exploit

it, we want to control them all

● Control the `addr` for controlling

which handler it sends to

● Control the `len` for getting into the

correct handler

● Control the `buf` for getting into the

correct branch

16

Prerequesite Two:

Gain control of the three parameters of the DMA
write operation

17

Prerequesite - Case 3

static Addr_overlaps_mmio(void* addr)
{
 MemoryRegion *mr = GetDeviceMMIORegion();

 return belongToMR(addr) ;
}

DMA operation for local access to the

region of MMIO memory is gurarded.

Can’t DMA access handlers of a device

from the device itself.

18

Prerequesite Three:

The destination where the DMA operation is
located can be reached

19

Agenda

● Indroduce

● Challenges

● DMA Oriented Programing <<
● Exploitation

● DEMO Time

● Conclusion

20

I/O Request Handler Model

I/O Request

Device

addr
condition

data
condition

size
condition

Switch

data
condition

DMA Write Data1

Handler 1

DMA Write Data2

DMA Write Data3

Handler 2

Handler 3

21

I/O Request Handler Model

I/O Request

Device

addr
condition

data
condition

size
condition

Switch

data
condition

DMA Write Data1

Handler 1

DMA Write Data2

DMA Write Data3

Handler 2

Handler 3

I/O Response

22

DMA Reflection

DMA Write Data

...... 0x42 0x80 0x23

Handler A

Reset

val
&
1

<<
5
?

Guard

Device

Handler B

23

DMA Reflection

DMA Write Data

...... 0x42 0x80 0x23
Reset

val
&
1

<<
9
?

Device A Device B

24

DMA Reflection

DMA Write Data

...... 0x42 0x80 0x23

Source Device

......

DMA Write Data

...... 0x33 0x08

val
&
1

<<
9
?

0xA2

Springborad 1

......

DMA Write Data

...... 0x33 0x08

val & 1 << 3 ?

0xA2

Springborad 2

......

Target Device

val
&
1

<<
4
?

Reset

25

Network Loopback Mode

• Totally controllable content
• Synchronization Processing

Driver Frontend

DMA Read

DMA Write

26

Network Loopback Mode
static const MemoryRegionOps rtl8139_io_ops = {
 .read = rtl8139_ioport_read,
 .write = rtl8139_ioport_write,
 .impl = {
 .min_access_size = 1,
 .max_access_size = 4,
 },
 .endianness = DEVICE_LITTLE_ENDIAN,
};

`size`
Condition

static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
{
 switch (addr)
 {

 case TxPoll:

 if (val & (1 << 6))
 {
 rtl8139_cplus_transmit(s);
 }
 break;

}

`data`
Condition

27

Network Loopback Mode
static void rtl8139_cplus_transmit(RTL8139State *s)
{
 int txcount = 0;

 while (txcount < 64 && rtl8139_cplus_transmit_one(s))
 {
 ++txcount;
 }

}

Up to 64 times of
DMA Write Operation

static int rtl8139_cplus_transmit_one(RTL8139State *s)
{
 int descriptor = s->currCPlusTxDesc;
 dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
 cplus_tx_ring_desc += 16 * descriptor;

 uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
 pci_dma_read(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
 txdw0 = le32_to_cpu(val);
 pci_dma_read(d, cplus_tx_ring_desc+4, (uint8_t *)&val, 4);
 txdw1 = le32_to_cpu(val);
 pci_dma_read(d, cplus_tx_ring_desc+8, (uint8_t *)&val, 4);
 txbufLO = le32_to_cpu(val);
 pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
 txbufHI = le32_to_cpu(val);

Subsequent code flow
relies on the preset
context, which is no
longer related to the

parameters provided by
the DMA operation

28

Resurrecting Zombies

static ssize_t qemu_net_queue_deliver(NetQueue *queue,
 NetClientState *sender,
 unsigned flags,
 const uint8_t *data,
 size_t size)
{
 ssize_t ret = -1;
 struct iovec iov = {
 .iov_base = (void *)data,
 .iov_len = size
 };

 queue->delivering = 1;
 ret = queue->deliver(sender, flags, &iov, 1, queue->opaque);
 queue->delivering = 0;

 return ret;
}

We can’t re-deliver the
packet while the queue

is delivering

But it can still be used
to DMA Write to
another device

29

Network Loopback Mode

static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int
do_interrupt)
{

 dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
 if (dot1q_buf) {
 pci_dma_write(d, rx_addr, buf, 2 * ETH_ALEN);
 pci_dma_write(d, rx_addr + 2 * ETH_ALEN,
 buf + 2 * ETH_ALEN + VLAN_HLEN,
 size - 2 * ETH_ALEN);
 } else {
 pci_dma_write(d, rx_addr, buf, size);
 }

}

Totally Controllable
Scatter-Gathered

DMA Write Operation

30

DMA Refraction
Source Handler

DMA Write Operation

Network Loopback Handler

Target Handler 1 Target Handler 2 Target Handler N

Scatter-Gathered DMA

val & 1 << 6 ?

DMA Write Operation DMA Write Operation DMA Write Operation

31

DMA Oriented Programing

Handler 1

DMA Write

Handler 2

DMA Write

Handler 3

DMA Write

Handler 4

DMA Write

Handler 6

DMA Write

Handler 5

DMA Write

Handler 7

Scatter-Gathered
DMA Write

Target Handler N

Context Setting
Target Handler N+1

Reset

Target Handler N+2

Occupy

32

DMA Oriented Programing

● Base on the data which the DMA Write Operation provides, find a path and
leverage DMA Reflection to connect it into the `Scatter-Gathered DMA
Operation Network` to regain control

● We can build the entire DMA network for constructing DMAOP-Chain
conveniently

● Leveraging DMA Refraction to transform the DMA Write Operation into nearly
a callback function, each DMA Write Operation may be a potential chance for
attackers to regain control without exiting the I/O context

● In addition to break through the aforementioned prerequisites, DMA-OP can
be used to construct some novel exploit techniques

33

Agenda

● Indroduce

● Challenges

● DMA Oriented Programing

● Exploitation <<

● DEMO Time

● Conclusion

34

Primitive

Vulnerable Function

NULL Pointer Check

Recursion Condition

DMA Write

Free

Clear Pointer

Refraction

Clear Tcache

Disable Recursion

Re-entrancy

Occupy The Chunks

Object A Object B

35

Primitive

Vulnerable Function

NULL Pointer Check

Recursion Condition

DMA Write

Free

Clear Pointer

Refraction

Clear Tcache

Disable Recursion

Re-entrancy

Occupy The Chunks

Object A Object B

36

Uaf-After-uaF

● Now we got 2 objects which were already freed while we
still hold the pointers, and we could free them again

● 144-byte chunk(X) and 64-byte chunk(Small X)

● To leak infomation from the host, occupy X with an object
which could write its content to the guests

● To hijack the control flow, occupy Small X with another
timer, overwrite the callback pointer with function address
of `system`

37

Stability Optimization

Attacker

Driver

Attacker

Alloc X

Alloc Small X

Alloc Small X

X

Small X

38

Stability Optimization

Attacker

Driver

Alloc X

Alloc Small X

X

Small X

Alloc Small X
Refraction

39

Info Leak

● To leak the function address of `system`, leak the base
address of libc first

● To use Unsorted-Bin-Leak trick to leak base address of libc,
free an object and throw it into the unsorted bin from main-
arena

● To hijack the control flow properly, the `timer_list` pointer
must be leaked

● To place arguments of `system` function, leak an address of
a controllable buffer

40

Info Leak
static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
{
......
 if (data_size < sizeof(NvmeZoneReportHeader)) {
 return NVME_INVALID_FIELD | NVME_DNR;
 }
......
 buf = g_malloc0(data_size);
 zone = &ns->zone_array[zone_idx];
 for (i = zone_idx; i < ns->num_zones; i++) {
 if (partial && nr_zones >= max_zones) {
 break;
 }
 if (nvme_zone_matches_filter(zrasf, zone++)) {
 nr_zones++;
 }
 }
 header = buf;
 header->nr_zones = cpu_to_le64(nr_zones);
......
 z->zt = zone->d.zt;
......
 }
 }
 status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
 g_free(buf);
 return status;
}

Occupy With Size
>= 64 bytes

First 8 Bytes
(Control to 0x01)

Bytes from offset
0x40

(Control to 0x02)

DMA Write to the
guest

41

Info Leak
static MemTxResult dma_buf_rw(void *buf, dma_addr_t len, dma_addr_t
*residual,
 QEMUSGList *sg, DMADirection dir,
 MemTxAttrs attrs)
{
......
 while (len > 0) {
 ScatterGatherEntry entry = sg->sg[sg_cur_index++];
 dma_addr_t xfer = MIN(len, entry.len);
 res |= dma_memory_rw(sg->as, entry.base, ptr, xfer, dir, attrs);
 ptr += xfer;
 len -= xfer;
 xresidual -= xfer;
 }
......
}

Scatter-Gathered
DMA Write :)

But we only have value 0x01 and 0x02 :(

We must reflect the value to the netcard
to construct DMA Refraction here

42

Info Leak
static void xhci_doorbell_write(void *ptr, hwaddr reg,
 uint64_t val, unsigned size)
{
 reg >>= 2;
 if (reg == 0) {
......
 } else {
 epid = val & 0xff;
 streamid = (val >> 16) & 0xffff;
 if (reg > xhci->numslots) {
 DPRINTF("xhci: bad doorbell %d\n", (int)reg);
 } else if (epid == 0 || epid > 31) {
 DPRINTF("xhci: bad doorbell %d write: 0x%x\n",
(int)reg, (uint32_t)val);
 } else {
 xhci_kick_ep(xhci, reg, epid, streamid);
 }
 }

DMA jump to RTL8139
(Refraction Chance)

static void xhci_kick_epctx(XHCIEPContext
*epctx, unsigned int streamid)
{
 if (epctx->nr_pstreams) {

 xhci_set_ep_state(xhci, epctx, stctx,
EP_RUNNING);
 } else {
 ring = &epctx->ring;
 streamid = 0;
 xhci_set_ep_state(xhci, epctx, NULL,
EP_RUNNING);
 }

43

Info Leak

struct QEMUTimer {
 int64_t expire_time;
 QEMUTimerList *timer_list;
 QEMUTimerCB *cb;
 void *opaque;
 QEMUTimer *next;
 int attributes;
 int scale;
};

This must be
leaked

Overwrite this to
hijack control flow

This points to the
context of the timer

Overwrite it to a
controllable buffer

struct HDAAudioStream {
 HDAAudioState *state;
 const desc_node *node;
 bool output, running;
 uint32_t stream;
 uint32_t channel;
 uint32_t format;
 uint32_t gain_left, gain_right;
 bool mute_left, mute_right;
 struct audsettings as;
 union {
 SWVoiceIn *in;
 SWVoiceOut *out;
 } voice;
 uint8_t compat_buf[HDA_BUFFER_SIZE];
 uint32_t compat_bpos;
 uint8_t buf[8192]; /* size must be power of two */
 int64_t rpos;
 int64_t wpos;
 QEMUTimer *buft;
 int64_t buft_start;
};

44

Info Leak
struct QEMUTimer {
 int64_t expire_time;
 QEMUTimerList *timer_list;
 QEMUTimerCB *cb;
 void *opaque;
 QEMUTimer *next;
 int attributes;
 int scale;
};

static void hda_audio_input_timer(void *opaque)
{
 HDAAudioStream *st = opaque;

Controllable Buffer

45

Info Leak

● We can only alloc `buf` to occupy X since it must be above
64 bytes, it can’t be Small X

● Since the `nvme_zone_mgmt_recv` use `g_malloc0` to alloc
`buf`, and it must be called in the timer thread, must be
located in the main-arena

● To leak `timer_list` and the controllable buffer, slice the X
with timers in the unsorted-bin

● To avoid X to be merged when we throw it into the
unsorted-bin, we need to place X in a hole

46

Place X In A Hole

epctx 1
epctx 2
epctx 3
epctx 4
epctx 5
epctx 6

47

Place X In A Hole

epctx 1
epctx 2
epctx 3
epctx 4
epctx 5
epctx 6

X

48

Shuttle Bettwen Threads

I/O Thread

Main Thread

Alloc Non-Main-Arena
Code

DMA Jump Main-Arena
Code

49

Shuttle Bettwen Threads

I/O Thread

Main Thread

Alloc Tcache 2
Code

Free Tcache 1
Code

Free X

X

50

Shuttle Bettwen Threads

I/O Thread

Main Thread

Alloc Tcache 2
(Full)

Code

Free Tcache 1
Code

Free X

Main Arena

51

Shuttle Bettwen Threads And Devices

I/O Thread

Main Thread

Guest

NVME Alloc

Intel HDA Free Spray

timer_list controllable
buffer

libc base
address

X

timer Main
Arena

Tcache

bufXHCI Fill

Tcache
(Full)

52

Shuttle Bettwen Threads And Devices

I/O Thread

Main Thread

Guest

NVME Alloc

Intel HDA Free Spray

timer_list controllable
buffer

libc base
address

X

timer Main
Arena

Tcache

bufXHCI Fill

0x1 0x0 0x0 0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
0x2 0x0 0x0 0x0 0x0 0x0 0x0 0x0
......

53

DMA-OP Chain

buf(X)

0x01 0x02

NVME

0x80

XHCI

Refraction

RTL8139
Free Occupy

Intel HDA

Guest

libc base
address

controllable
buffer

timer_list

54

Hijack Control Flow

● Re-allocate a `epctx->kick_timer` on Small X

● Overwrite the `cb` function pointer to the function address of
`system`

● Fix the `timer_list` with the leaked real `timer_list`

● Fix the `opaque` with the leaked controllable buffer address

● Fill the leaked controllable buffer with the command line we want
`system` function to execute

● Kick the timer in the XHCI controller to escape from QEMU

55

Agenda

● Indroduce

● Challenges

● DMA Oriented Programing

● Exploitation

● DEMO Time <<

● Conclusion

56

DEMO Time

57

Agenda

● Indroduce

● Challenges

● DMA Oriented Programing

● Exploitation

● DEMO Time

● Conclusion <<

58

Conclusion

● Use Refraction to gather multiple I/O requests in one I/O context to avoid interference
from system driver's I/O requests

● Change the thinking, regard DMA operations in the code as a callback function that can
regain control, make the exploitation flexible, and audit TOCTOU related issues

● The community is preparing a patch to fix almost every DMA Reentrancy issue, but DMA
Oriented Programing will not be affected

● To defense DMA-OP effectively, permission need to be added for DMA operations, this
requires extensive auditing

● Creating a graph of `Scatter-Gathered DMA Operation Network`, which can effectively help
construct a DMA-OP chain

● DMA-OP in other hypervisors need to be audited such as VMware, VirtualBox

Thank you!

59

