7

7

#HITB2023AMS https://conference.hitb.org/ Ol

/

=023 ()
HIMS D.

Resurrecting Zombies
Leveraging advanced techniques of DMA reentrancy to escape QEMU

AN\N

Ao Wang | Security Research Expert| DBAPPSecurity WeBin Lab

#HITB2023AMS https://conference.hitb.org/ ’
- £

Ao Wang (@arayz)

® Security research at DBAPPSecurity WeBin Lab

® Hunting and exploiting vulnerabilities in critical
products

® Mobile/Browser/Virtualization

® Pwned Safari for mutiple times with callback related
vulnerabilites

® Mainly focus on QEMU-KVM currently

#HITB2023AMS

https://conference.hitb.org/

Agenda

e Indroduce

e Challenges

e DMA Oriented Programing
e Exploitation

e DEMO Time

e Conclusion

#HITB2023AMS

https://conference.hitb.org/

Agenda

eIndroduce <<

e Challenges

e DMA Oriented Programing
e Exploitation

e DEMO Time

e Conclusion

#HITB2023AMS

https://conference.hitb.org/

Related Work

e BlackHat Asia 2022, Hunting and Exploiting Recursive
MMIO Flaws in QEMU/KVM

o Root Cause
o Hunting And Exploitation
o Mitigation

e QEMU Community, Fix DMA MMIO reentrancy issues
o Fundamentally solve DMA Reentrancy problem
o Known vulnerabilities
o Mostly found by fuzzing

#HITB2023AMS

https://conference.hitb.org/

DMA Reentrancy Issue

® Make destination of DMA operation overlaps with MMIO region of the
peripherals modules to invoke function call access to MMIO handlers

® (aused by difference of hypervisor and real hardware
® No defenses in the code of QEMU except for fixed vulnerabilities

® Hard to fix, still got some known vulnerabilities in latest version, and there
are still some hidden vulnerabilities

® 2 types of patches
® Besides QEMU, some other hypervisors may also be affected(VirtualBox)

® Most will crash with infinite reentrancy, there are prequesites for exploiting

#HITB2023AMS

https://conference.hitb.org/

Agenda

e Indroduce

e Challenges <<
e DMA Oriented Programing
e Exploitation

e DEMO Time

e Conclusion

#HITB2023AMS

https://conference.hitb.org/

v

Prerequesite - Case 1

{

static Vulnerable Function()

if (Ref(obj) == NULL) {
return;

}

if (Recursion Condition) {
DMA_Write();

}

Free(obj);

Clear_Ref(obj);

Vulnerable Function

NULL Pointer Check

Recursion Condition

DMA Write

Free

Clear Ref

#HITB2023AMS https://conference.hitb.org/

Prerequesite - Case 1

Vulnerable Function

NULL Pointer Check

Recursion Condition

DMA Write

Free

Clear Pointer

Construct Primitives

Make destination of DMA operation
overlaps with MMIO region of the device
Re-enter the vulnerable function to free the
object twice

Occupy the freed chunk to prevent crash
after exiting the re-entrancy

!

Now we got an object that has been
already freed

#HITB2023AMS https://conference.hitb.org/

10)

Prerequesite - Case 1

bool prepare_mmio_access(MemoryRegion *mr)

{

bool release_lock = false;

if (lgemu_mutex_iothread_locked()) {
gemu_mutex_lock_iothread();
release_lock = true;

}

if (mr->flush_coalesced_mmio) {
gemu_flush_coalesced_mmio_buffer();

J

return release_lock:

|/0 thread is locked until
exiting MMIO handler
With glibc 2.31+, each
thread corresponds to an
independent arena and
tcache

#HITB2023AMS

https://conference.hitb.org/
v

Prerequesite - Case 1

Vulnerable Function

NULL Pointer Check

Recursion Condition

DMA Write

Free

Clear Pointer

Exiting I/0 context safely
® (Occupy the obejct to prevent crash
® (hange the recursion condition to prevent infinite

reentancy

Occupy the freed chunk stably

® (lear the tcache before re-enter the vulnerable function
Re-enter the vulnerable function to free the object

Some other necessary context settings also require
DMA Write Operations

#HITB2023AMS

https://conference.hitb.org/

v

Prerequesite - Case 1

Vulnerable Function

NULL Pointer Check

Recursion Condition

DMA Write

Free

Clear Pointer

\We need more than 10 DMA write operations

before exiting the MMIO context

#HITB2023AMS

13

https://conference.hitb.org/

Prerequesite One:
Need Scatter-Gathered DMA Operations

#HITB2023AMS

@

https://conference.hitb.org/
v

Prerequesite - Case 2

static Vulnerable_Function(int* data)

{
int* obj = GetFromContext();
DMA_Write(data);
Use(obij);

JF

static Free_The_0Object (int val)
{
if (val & FREE_CONDITION_BIT) {
Free(obj);
}
}

To trigger the UAF, we must leverage the DMA
Write Operation to send a specific value to the
specific handler of MMIO region and free the

object from the context

#HITB2023AMS https://conference.hitb.org/

(15)

Prerequesite - Case 2

/**
* pci_dma_write: Write to address space from PCl device.
* Return a MemTxResult indicating whether the operation succeeded
* or failed (eg unassigned memory, device rejected the transaction,
* |OMMU fault).
* @dev: #PCIDevice doing the memory access
* @addr: address within the #PClIDevice address space
* @buf: buffer with the data transferred
* @len: the number of bytes to write
*/
static inline MemTxResult pci_dma_write(PClDevice *dev, dma_addr_t
addr, const void *buf, dma_addr_t len)
{
return pci_dma_rw(dev, addr, (void *) buf, len,
DMA_DIRECTION_FROM_DEVICE, MEMTXATTRS_UNSPECIFIED);
}

DMA Write Operation needs 3 paramters
to go:

® addr: Destination Address

® buf: Contents To Write

@® len: Length Of Contents

To trigger the vulnerability or to exploit

it, we want to control them all

@® Control the “addr” for controlling
which handler it sends to

@ Control the ‘len’ for getting into the
correct handler

@ Control the "buf for getting into the

correct branch

#HITB2023AMS https://conference.hitb.org/

Prerequesite Two:

Gain control of the three parameters of the DMA
write operation

#HITB2023AMS https://conference.hitb.org/

v

Prerequesite - Case 3

static Addr_overlaps_mmio(void* addr)

{
MemoryRegion *mr = GetDeviceMMIORegion();

return belongToMR(addr) ;
}

17

#HITB2023AMS https ://conference hith.org/

Prerequesite Three:

The destination where the DMA operation is
located can be reached

#HITB2023AMS

19

https://conference.hitb.org/

Agenda

e Indroduce

e Challenges

e DMA Oriented Programing
e Exploitation
e DEMO Time

e Conclusion

<<

#HITB2023AMS https://conference.hitb.org/

/0 Request Handler Model

.

@

addr
condition

data
condition

size
condition

Device

l

Handler 1

DMA Write Data1

Handler 2

DMA Write Data2

Handler 3

data
condition

DMA Write Data3

#HITB2023AMS https://conference.hitb.org/

/0 Request Handler Model

.

@

addr
condition

data
condition

size
condition

Device

Handler 1

DMA Write Data1

Handler 2

L&
]

DMA Write Data2

Handler 3

data
condition

DMA Write Data3

https://conference.hitb.org/ |

é' DMA Reflection
7 e
Handler A
 DMAWrite Data

L |

https://conference hitb.org/ | \\\\’w
DMA Reflection

%

itb.org/ |

DMA Reflection

é

#HITB2023AMS https://conference.hitb.org/

Network Loopback Mode

* Totally controllable content
* Synchronization Processing

DMA Read

Driver Frontend

<

DMA Write

25

#HITB2023AMS

26

https://conference.hitb.org/

Network Loopback Mode

static const MemoryRegionOps rtl8139_io_ops = {
.read = rtl8139_ioport_read,

\write = rtl8139 ioport_write,

impl = {

.min_access_size =1, <
.max_access_size = 4,

}V
.endianness = DEVICE_LITTLE_ENDIAN,

8

static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)

switch (addr)

case TxPoll:

if (val & (1<<6))

rtl8139_cplus_transmit(s);

‘size”
Condition

‘data’
Condition

#HITB2023AMS

27

https://conference.hitb.org/

v

Network Loopback Mode

static void rtl8139_cplus_transmit(RTL8139State *s)
{

int txcount = 0;

Up to 64 times of

I while (txcount < 64 && rtl8139_cplus_transmit_one(s)) K

1
++txcount;

static int rtl8139_cplus_transmit_one(RTL8139State *s)

int descriptor = s->currCPlusTxDesc;

dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
cplus_tx_ring_desc +=16 * descriptor;

uint32_t val, txdwO,txdw1,txbuflLO,txbufHI;
pci_dma_read(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
txdwO = le32_to_cpu(val);

pci_dma_read(d, cplus_tx_ring_desc+4, (uint8_t *)&val, 4);
txdw1 = le32_to_cpu(val);

pci_dma_read(d, cplus_tx_ring_desc+8, (uint8_t *)&val, 4);
txbuflLO = le32_to_cpu(val);

pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
txbufHI = le32_to_cpu(val);

DMA Write Operation

Subsequent code flow
relies on the preset
context, which is no

longer related to the
parameters provided by
the DMA operation

#HITB2023AMS

28

v

R

https://conference.hitb.org/

esurrecting Zombies

{

static ssize_t gemu_net_queue_deliver(NetQueue *queue,

NetClientState *sender,
unsigned flags,

const uint8_t *data,
size_t size)

We can’t re-deliver the
packet while the queue
is delivering

ssize_tret = -1,

struct ioveciov = {
.iov_base = (void *)data,
.iov_len =size

h

queue->delivering =1,
ret = queue->deliver(sender, flags, &iov, 1, queue->opaque)
queue->delivering = 0;

return ret;

But it can still be used
to DMA Write to
another device

#HITB2023AMS

29

v

https://conference.hitb.org/

Network Loopback Mode

static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int
do_interrupt)

dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
if (dot1g_buf) {
pci_dma_write(d, rx_addr, buf, 2 * ETH_ALEN);
pci_dma_write(d, rx_addr + 2 * ETH_ALEN.,
buf + 2 * EJH_ALEN + VLAN_HLEN,
size - 2 * EfH_ALEN);

Totally Controllable
Scatter-Gathered
DMA Write Operation

}elsed
pci_dma_write(d, rx_addr, buf, size):

#HITB2023AMS https://conference.hitb.org/

v

DMA Refraction

‘ DMA Write Operation

DMA Write Operation =zzz=m DMA Write Operation ===z DMA Write Operation

Target Handler 1 Target Handler 2 Target Handler N

30

#HITB2023AMS https://conference.hitb.org/

DMA Oriented Programing

Handler 1 Handler 3 Handler 4 Handler 5
DMA Write DMA Write DMA Write [t DMA Write
Handler 2 Handler 7 Handler 6
DMA Write i
Scatter-Gathered ‘ DA AWite
DMA Write
Target Handler N Target Handler N+1 Target Handler N+2
Context Setting Reset Occupy

-3)

#HITB2023AMS

32

https://conference.hitb.org/

DMA Oriented Programing

e Base on the data which the DMA Write Operation provides, find a path and
leverage DMA Reflection to connect it into the “Scatter-Gathered DMA
Operation Network™ to regain control

e \We can build the entire DMA network for constructing DMAOP-Chain
conveniently

e Leveraging DMA Refraction to transform the DMA Write Operation into nearly
a callback function, each DMA Write Operation may be a potential chance for
attackers to regain control without exiting the I/0 context

e |n addition to break through the aforementioned prerequisites, DMA-OP can
be used to construct some novel exploit techniques

#HITB2023AMS

33

https://conference.hitb.org/

Agenda

e Indroduce
e Challenges
e DMA Oriented Programing

o Exploitation
e DEMO Time

e Conclusion

<<

#HITB2023AMS ~ https://conference.hitb.org/

v

Primitive

Vulnerable Function
—Pl Clear Tcache

NULL Pointer Check

| Recursion Condition_| ¥ Disable Recursion

DMA Write —P| Refraction
—Pl Re-entrancy

Free

Clear Pointer —Pl Occupy The Chunks

@

#HITB2023AMS

@

https://conference.hitb.org/
v

Primitive

Vulnerable Function

NULL Pointer Check

Recursion Condition

DMA Write

Free

Clear Pointer

—Pl Clear Tcache

—Pl Disable Recursion

—Pl Re-entrancy

—» Occupy The Chunks

Object A

Object B

#HITB2023AMS

36

https://conference.hitb.org/

Uaf-After-uaF

e Now we got 2 objects which were already freed while we
still hold the pointers, and we could free them again

e 144-byte chunk(X) and 64-byte chunk(Small X)

e To leak infomation from the host, occupy X with an object
which could write its content to the guests

e To hijack the control flow, occupy Small X with another
timer, overwrite the callback pointer with function address
of ‘'system’

—

_ https://conference hitb.org/ |
v

/
)

@

Stability Optimization

(owoser) [
Come) bt

-x

Small X

fa—

itb.org/ |

v

Stability Optimization

N

Small X

#HITB2023AMS

39

https://conference.hitb.org/

Info Leak

e To leak the function address of 'system’, leak the base
address of libc first

e To use Unsorted-Bin-Leak trick to leak base address of libc,
free an object and throw it into the unsorted bin from main-
arena

e To hijack the control flow properly, the "timer_Llist” pointer
must be leaked

e To place arguments of "system™ function, leak an address of
a controllable buffer

#HITB2023AMS

40

https://conference.hitb.org/

Info Leak

static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, N\vmeRequest *req)

{

if (data_size < sizeof(NvmeZoneReportHeader)) {
return NVME_INVALID_FIELD | NVME_DNR;

Occupy With Size

buf = g mallocO(data_size):
zone = &ns->zone_arrav[zone_idx;
for (i = zone_idx; i < ns->num_zones; i++) {
if (partial && nr_zones >= max_zones) {
break;

}

>= 64 bytes

First 8 Bytes

if (nvme_zone_matches_filter(zrasf, zone++)) { ‘
nr_zones++;

}

1
header = buf;
header->nr_zones = cpu_to_le64(nr_zones);

(Control to 0x01)

Bytes from offset
0x40

I z->zt = zone->d.zt; K

I status = nvme_c2h(n, (uint8_t *)buf, data_size, req); K

(Control to 0x02)

DMA Write to the

s—iree(our);
return status;

guest

#HITB2023AMS

@

https://conference.hitb.org/
v

Info Leak

static MemTxResult dma_buf_rw(void *buf, dma_addr_t len, dma_addr_t
*residual,

QEMUSCGList *sg, DMADirection dir,
MemTxAttrs attrs) Scatter-Gathered
{ l DMA Write :)

while (len > 0) {
ScatterGatherEntry entry = sg->sg[sg_cur_index++];
dma_addr_t xfel
res |= dma_memory_rw(sg->as, entry.nase, ptr, Xter, air, atwrs);
ptr += xfer;
len -= xfer;
xresidual -= xfer;

#HITB2023AMS https://conference.hitb.org/

v

Info Leak

L
static void xhci_doorbell_write(void *ptr, hwaddr reg, J‘ ':‘tatlc void),(hc'-k'_Ck-EpCtx()_(HCIEPCO”tEXt
uint64_t val, unsigned size) “ {epctx, unsigned int streamid)
2
{ reg >>= 2; “ if (epctx->nr_pstreams) {
if (reg==0){ “
,,,,,, * xhci_set_ep_state(xhci, epctx, stctx,
}else{ “ EP_RUNNING);
epid = val & Oxff; belse{ _
streamid = (val >> 16) &@xtfff; ring = E.tepctx—>r|ng;
if (reg > xhci->numsid®) { streamid = 0; '
DPRINTF(“xh&i‘ad doorbell %d\n", (int)reg); xhci_set_ep_state(xhci, epctx, NULL,
} else if (epidg== 0 || epid > 31) { EP_RUNNING);
DPRINTM¥'xhci: bad doorbell %d write: 0x%x\n",]
(int)reg, (@int32_t)val); e
T@{ Y A
xhci_kick_ep(xhci. reg. epid, streamid); DMA jump to RTL8139
) } (Refraction Chance)

42

#HITB2023AMS https://conference.hitb.org/

‘_.’ 43

Info Leak

struct QEMUTimer {
intb4_t expire_time;

This must be
leaked

QEMUTimerList *timer_Llist;

OEMUTimer(CB *cb;

Overwrite this to
hijack control flow

void *opaque;
QEMUTimer *next;
int attributes;

int scale;

This points to the
context of the timer

Overwrite itto a
controllable buffer

#HITB2023AMS

44

https://conference.hitb.org/
v

Info Leak

struct QEMUTimer {
intb4_t expire_time;
QEMUTimerList *timer_Llist;
OEMUTimerCB *cb;
VIO Timer "nex®

Bt attributes; ®

Bnt scale: ®

) s,
[]
- *

-

static void hda_audio_input_tim@(void *opaque)

|
i_HDAAudIOStream *st = opaque;

Controllable Buffer

struct HDAAudioStream {
HDAAudioState *state;
const desc_node *node;
bool output, running;
uint32_t stream;
uint32_t channel,
uint32_t format;
uint32_t gain_left, gain_right;
bool mute_Lleft, mute_right;
struct audsettings as;
union {
SWVoiceln *in;
SWVoiceOut *out;
} voice;
uint8_t compat_buf[HDA_BUFFER_SIZE];
o SREeE=hpOS;
/* size must be power of two */

uint8_t buf[8192]
pos;

er *buft;
Ppuft_start;

int64_{

#HITB2023AMS

45

https://conference.hitb.org/

Info Leak

e \We can only alloc "buf” to occupy X since it must be above
64 bytes, it can't be Small X

e Since the nvme_zone_mgmt_recv use g_mallocO" to alloc
“buf’, and it must be called in the timer thread, must be
located in the main-arena

e To leak ‘timer_list” and the controllable buffer, slice the X
with timers in the unsorted-bin

e To avoid X to be merged when we throw it into the
unsorted-bin, we need to place X in a hole

fa—

L N
_ https://conference hitb.org/ |

' Place X In A Hole

N

_ https://conference hitb.org/ |

' Place X In A Hole

N

fa—

itb.org/ |

v

Shuttle Bettwen Threads

N

Alloc Pl Non-Main-Arena

DMA Jump Main-Arena

fa—

L N
_ https://conference hitb.org/ |

v

Shuttle Bettwen Threads
FF Free X =) Tcachel

N

Free Alloc X & Tcache?2

@

—

L N
_ https://conference hitb.org/ |

v

Shuttle Bettwen Threads
F F Free Alloc X Tcache 2
y N (Full)
FF— +
Free Main Arena Tcache 1

N

@

https://conference.hitb.org/ |

v

Shuttle Bettwen Threads And Devices

F timer list controllable libc base
- buffer address
aS 3 5

Main Thread
NVME

buf

Intel HDA Free Spray

@

1 -‘
'MF‘?N" https://conference hitb.org/ |

' Shuttle Bettwen Threads And Devices

/ timer list controllable libc base
- buffer address

X £
/oThread ’ S—

#HITB2023AMS https://conference.hitb.org/

v

DMA-0P Chain

NVME <
buf(X) — XHC| RTL8139 Intel HDA
0x01 = 0x02 0x80 Refraction Free ' Occupy —
G UeSt 0x1 0x0 0x0 0x0 Ox0 0x0 0x0 0x0
timer list 0x0 0x0 Ox0 0x0 0x0 0x0 Ox0 0x0
— 0x0 0x0 Ox0 0x0 0x0 0x0 Ox0 0x0
0x0 0x0 Ox0 0x0 0x0 0x0 Ox0 0x0
- 0x0 0x0 Ox0 0x0 0x0 0x0 Ox0 0x0
libc base controllable 0x0 0x0 Ox0 0x0 0x0 Ox0 0x0 0x0
_} address buffer 0x2 0x0 Ox0 Ox0 0x0 0x0 0x0 0x0

53

#HITB2023AMS

54

https://conference.hitb.org/

Hijack Control Flow

e Re-allocate a “epctx->kick_timer® on Small X

e Overwrite the ‘cb” function pointer to the function address of
‘system’

e Fix the timer_Llist” with the leaked real "timer_list’
e Fixthe opaque with the leaked controllable buffer address

e Fill the leaked controllable buffer with the command line we want
‘system’ function to execute

e Kick the timer in the XHCI controller to escape from QEMU

#HITB2023AMS

55

https://conference.hitb.org/

Agenda

e Indroduce
e Challenges
e DMA Oriented Programing

e Exploitation

¢eDEMO Time <<

e Conclusion

#HITB2023AMS https://conference.hitb.org/

EMO Time

Activities) Terminal ~ 128 12 18:50 ®

SimpleScreenRecorder o &
Q
Separate Fil

Container: MP4

Constant rate factor:
Preset: sup

Allow Frame skipping

Continue

56

HEDAN

NEME

#HITB2023AMS

57

https://conference.hitb.org/

Agenda

e Indroduce

e Challenges

e DMA Oriented Programing
e Exploitation

e DEMO Time

e Conclusion <<

#HITB2023AMS

58

https://conference.hitb.org/

Conclusion

® Use Refraction to gather multiple I/0 requests in one /0 context to avoid interference
from system driver's I/0 requests

® (hange the thinking, regard DMA operations in the code as a callback function that can
regain control, make the exploitation flexible, and audit TOCTOU related issues

® The community is preparing a patch to fix almost every DMA Reentrancy issue, but DMA
Oriented Programing will not be affected

® To defense DMA-OP effectively, permission need to be added for DMA operations, this
requires extensive auditing

® (reating a graph of "Scatter-Gathered DMA Operation Network’, which can effectively help
construct a DMA-OP chain

® DMA-OP in other hypervisors need to be audited such as VMware, VirtualBox

N N

S
\\\ V{24
7/

https://conference.hitb.

Thank you!

