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XRP Raid Protector: Killing a Critical Bug Worth 40 Billion Dollars
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Haoyu Yang(@spacesheepspec)

● Researcher at Tencent Security Xuanwu Lab

● Focus on blockchain and application security

● CTF player at Tea Delieverers
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What is XRP?

● XRP means XRP Raid Protector 

The Critical Bug 

XRP Ledger Node RCE VulnerabilityRaid Protector

Bug Killer

spraying



XRP & XRP Ledger & Ripple
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● XRP: A popular cryptocurrency in the 
world. Native token of XRP Ledger.

● XRP Ledger (XRPL): A decentralized 
public layer-1 blockchain.

● Ripple: A company that created XRPL 
chain, a sponsor of the bug bounty 
program for rippled.



About XRP Ledger
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● Key features
○ Trust lines: third-party currency issuing and transferring
○ Rippling[1]: transfer third-party currency through specific path
○ Exchange features: offers, auto-bridging, AMM…
○ No smart contract

● Consensus
○ The Ripple Protocol Consensus Algorithm
○ Based on BFT(Byzantine Fault-Tolerant)

[1] https://xrpl.org/rippling.html



Consensus Network
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Roles of participants
● Tracking server: Distributes transactions from clients 

and responds to queries about the ledger
● Validator: Performs the same functions as tracking 

servers and also contributes to advancing the ledger 
history.

[2] https://xrpl.org/consensus.html



rippled – the core node server
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● rippled: Decentralized cryptocurrency 
blockchain daemon

● Implementing the XRP Ledger 
protocol in C++ (Boost and STL).

● The only node server that compose 
the XRPL network.

● Attack Vectors:
○ RPC: wallet - node
○ P2P: node - node



Network Communication
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P2P communication is accomplished by:
1. HTTP handshake

○ HTTP/1.1 Upgrade mechanism on “/”

2. Protobuf-based communication
○ Approximately 25 types of P2P message

[3] https://github.com/XRPLF/rippled/tree/develop/src/ripple/overlay



The Bug (CVE-2022-29077)
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1 slide before the 
vulnerable code was 

PRESENTED



PeerFinder
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● Livecache: Holds relayed IP addresses that have been 
received recently in the form of Endpoint messages via the 
peer to peer overlay.

● Bootcache: Stores IP addresses useful for gaining initial 
connections in file system.

[4] https://github.com/XRPLF/rippled/tree/develop/src/ripple/peerfinder



The Bug (CVE-2022-29077)
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● Out-of-bound write
○ m_lists: an array that contains 8 boost intrusive lists

m_lists[0]

m_lists[1]

...

m_lists[5]

node node

node

node node

...

m_lists[6]

m_lists[7]

node node

x x x

x x x



The Bug (CVE-2022-29077)
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● TMEndpoints message
○ endpoint: ipv4 or ipv6 address
○ hops: network distance measuring in hops
○ unsigned hops is cast to signed hops



The Bug (CVE-2022-29077)
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● Out-of-bound write
○ m_lists underflow
○ m_lists overflow

m_lists[0]

m_lists[1]

...

m_lists[5]

node node

node

node node

...

m_lists[6]

m_lists[7]

node node

x x x

x x x node node

push_front

-2 hops

-1 hops

overflow check



The Bug (CVE-2022-29077)
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● Memory layout
class ApplicationImp
├── std::unique_ptr<Overlay> overlay_;
│ ├── Application& app_;
│ ├── boost::asio::io_service& io_service_;
│ ├── ...
│ └── std::unique_ptr<PeerFinder::Manager> m_peerFinder;
│ ├── boost::asio::io_service& io_service_;
│ ├── std::optional<boost::asio::io_service::work> work_;
│ ├── clock_type& m_clock;
│ ├── beast::Journal m_journal;
│ ├── StoreSqdb m_store;
│ ├── Checker<boost::asio::ip::tcp> checker_;
│ └── Logic<decltype(checker_)> m_logic;
│ ├── beast::Journal m_journal;
│ ├── clock_type& m_;
│ ├── Store& m_store; clock
│ ├── Checker& m_checker;
│ ├── std::recursive_mutex lock_;
│ ├── std::shared_ptr<Source> fetchSource_;
│ ├── Config config_;
│ ├── Counts counts_;
│ ├── std::map<beast::IP::Endpoint, Fixed> fixed_;
│ └── Livecache<> livecache_;
└── ...

m_lists[0]

m_lists[1]

...

m_lists[5]

node node

node

node node

...

m_lists[6]

m_lists[7]

node node

? ? ?

? ? ?



The Bug (CVE-2022-29077)
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● push_front operation
○ Double-linked list
○ Inserting a node in the front of the list

next next

prev prev

next

prev

next

prev

next next

prev prev

next

prev

next

prev

next nodeprev node



OOB Write Internal
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3 slides before the 
DoS attack

ARRIVED



xxx_node xxx_node

From OOB to RCE
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First Instinct
● Search for similar double-linked lists
● Insert to that list
● Make a type (c++ obj) confusion

m_lists[0]

m_lists[1]

...

Endpoint

...

x x x

xxx_list Endpoint xxx_node

Endpoint

Endpoint

xxx_node

x x x



From OOB to RCE
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● push_front operation
○ No consistency check
○ No need to be a real double-linked list

next next

prev prev next

prev

next

prev

next next

prev prev next

prev

next node
prev node



From OOB to RCE
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● List all gadget addresses that won’t trigger SEGFAULT

next next

prev prev next

prev

m_lists[0]

m_lists[1]

...

Endpoint

...

x x x

Endpoint

Endpoint

x x x

x x x



[Bonus] DoS Exploit
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...

io_service_

m_lists[]

const bool one_thread_;
mutable mutex mutex_;
event wakeup_event_;
reactor* task_;
......

impl_

0x08 impl_

0x00 service_registry_

faked 
object

...

io_service Obj

Lock won’t be 
released 
anymore !

io_service_impl Obj

...

● Deadlock leads to DoS.
● Service restarts after 10 mins.

next node prev node



Exploit Development
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8 slides before the 
node server was 

EXPLOITED



RCE Exploit

● Fake an endpoint obj into vtable.
● Control flow hijacking Gadget:

○ call   qword ptr [rax+0x10]
○ call   qword ptr [rax+0x60]
○ call   qword ptr [rax+0A0h]
○ call   qword ptr [rax+0A8h]
○ call   qword ptr [rax+0B8h]

next

prev

next next

prev prev next

prev

vtable_ptr

0x00

0x10 

0x20

0x30

hops protocol

ip_address

- port

- -

22



Heap Spraying
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Challenges
● Limited interfaces which accept 

binary bytes as input.
● Strict management of object 

lifetime.
● Always avoiding potential DoS 

vulnerability.

Controllable Payloads



Heap Spraying
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Long-term memory preallocation
● Endpoint

○ “ipv6 address” field
○ must follow the validation verifications 
○ only last for 30 seconds

● Transaction 
○ “Condition” field
○ 250 trasactions in queue at most
○ will be broadcast into the whole network



Heap Spraying
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● Manifest
● Go deeper into Protobuf



Heap Spraying
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● Manifest
● Go deeper into Protobuf



Heap Spraying
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● Long-term object? Creating an acceptable manifest is hard.

The "manifest" is a block of data that 
authorizes an ephemeral signing key 
with a signature from the validator's 
master key pair.



Heap Spraying
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● No need to be acceptable.
● Construct messages filled with 

80000+ manifests. (max 64MB)
● Allocations last for 1-2s.

. . .



Heap Spraying
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● No regular memory holes

● Instead,
○ Send two 64 MB Manifest messages.
○ Send one malformed Endpoints message.
○ Send another two 64 MB Manifest messages.

… …

…

… … …

80000+ heap chunks



RCE Exploit
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Exploiting Estimation
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For exploiting one 
victim node

Network traffic 1220MB

Time cost 12minutes

For exploiting the 
entire network 
(1000 victims)

Network traffic 1191GB

Time cost 9 Days



Post-Exploitation of
Blockchain Infrastructure
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ne slide  before
the exploit was

DEMONSTRATED
O



Gaining profit from RCE
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● Plan A: Stealing wallet credentials which are possibly stored 
on the compromised servers.

● Plan B: Stealing assets from exchanges by controlling their 
XRPL node servers.

● Plan C: Gaining profit through double-spending attacks after 
taking control of enough validators.

● Plan D: Hijacking some critical logic of compromised servers, 
such as:
○ Altering the logic of transaction verification which will introduce a super 

backdoor that allows arbitrary transactions constructed by the attackers 
to be accepted even if they are illegal.

○ Altering the logic of balance calculation to stealthily increase the balance 
of a specific address over time.



Demo video
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Demo video
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The Ending
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● A silent patch without explicit vulnerability information.
● Timeline

○ Jan 18, 2022: The bug was reported and confirmed.
○ Jan 24, 2022: The fix was issued and tested.
○ Feb 08, 2022: A new release of rippled including the fix was out.
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