
Haoyu Yang | Senior Security Researcher | Tencent Security Xuanwu Lab
1

XRP Raid Protector: Killing a Critical Bug Worth 40 Billion Dollars

2

Haoyu Yang(@spacesheepspec)

● Researcher at Tencent Security Xuanwu Lab

● Focus on blockchain and application security

● CTF player at Tea Delieverers

3

What is XRP?

● XRP means XRP Raid Protector

The Critical Bug

XRP Ledger Node RCE VulnerabilityRaid Protector

Bug Killer

spraying

XRP & XRP Ledger & Ripple

4

● XRP: A popular cryptocurrency in the
world. Native token of XRP Ledger.

● XRP Ledger (XRPL): A decentralized
public layer-1 blockchain.

● Ripple: A company that created XRPL
chain, a sponsor of the bug bounty
program for rippled.

About XRP Ledger

5

● Key features
○ Trust lines: third-party currency issuing and transferring
○ Rippling[1]: transfer third-party currency through specific path
○ Exchange features: offers, auto-bridging, AMM…
○ No smart contract

● Consensus
○ The Ripple Protocol Consensus Algorithm
○ Based on BFT(Byzantine Fault-Tolerant)

[1] https://xrpl.org/rippling.html

Consensus Network

6

Roles of participants
● Tracking server: Distributes transactions from clients

and responds to queries about the ledger
● Validator: Performs the same functions as tracking

servers and also contributes to advancing the ledger
history.

[2] https://xrpl.org/consensus.html

rippled – the core node server

7

● rippled: Decentralized cryptocurrency
blockchain daemon

● Implementing the XRP Ledger
protocol in C++ (Boost and STL).

● The only node server that compose
the XRPL network.

● Attack Vectors:
○ RPC: wallet - node
○ P2P: node - node

Network Communication

8

P2P communication is accomplished by:
1. HTTP handshake

○ HTTP/1.1 Upgrade mechanism on “/”

2. Protobuf-based communication
○ Approximately 25 types of P2P message

[3] https://github.com/XRPLF/rippled/tree/develop/src/ripple/overlay

The Bug (CVE-2022-29077)

9

1 slide before the
vulnerable code was

PRESENTED

PeerFinder

10

● Livecache: Holds relayed IP addresses that have been
received recently in the form of Endpoint messages via the
peer to peer overlay.

● Bootcache: Stores IP addresses useful for gaining initial
connections in file system.

[4] https://github.com/XRPLF/rippled/tree/develop/src/ripple/peerfinder

The Bug (CVE-2022-29077)

11

● Out-of-bound write
○ m_lists: an array that contains 8 boost intrusive lists

m_lists[0]

m_lists[1]

...

m_lists[5]

node node

node

node node

...

m_lists[6]

m_lists[7]

node node

x x x

x x x

The Bug (CVE-2022-29077)

12

● TMEndpoints message
○ endpoint: ipv4 or ipv6 address
○ hops: network distance measuring in hops
○ unsigned hops is cast to signed hops

The Bug (CVE-2022-29077)

13

● Out-of-bound write
○ m_lists underflow
○ m_lists overflow

m_lists[0]

m_lists[1]

...

m_lists[5]

node node

node

node node

...

m_lists[6]

m_lists[7]

node node

x x x

x x x node node

push_front

-2 hops

-1 hops

overflow check

The Bug (CVE-2022-29077)

14

● Memory layout
class ApplicationImp
├── std::unique_ptr<Overlay> overlay_;
│ ├── Application& app_;
│ ├── boost::asio::io_service& io_service_;
│ ├── ...
│ └── std::unique_ptr<PeerFinder::Manager> m_peerFinder;
│ ├── boost::asio::io_service& io_service_;
│ ├── std::optional<boost::asio::io_service::work> work_;
│ ├── clock_type& m_clock;
│ ├── beast::Journal m_journal;
│ ├── StoreSqdb m_store;
│ ├── Checker<boost::asio::ip::tcp> checker_;
│ └── Logic<decltype(checker_)> m_logic;
│ ├── beast::Journal m_journal;
│ ├── clock_type& m_;
│ ├── Store& m_store; clock
│ ├── Checker& m_checker;
│ ├── std::recursive_mutex lock_;
│ ├── std::shared_ptr<Source> fetchSource_;
│ ├── Config config_;
│ ├── Counts counts_;
│ ├── std::map<beast::IP::Endpoint, Fixed> fixed_;
│ └── Livecache<> livecache_;
└── ...

m_lists[0]

m_lists[1]

...

m_lists[5]

node node

node

node node

...

m_lists[6]

m_lists[7]

node node

? ? ?

? ? ?

The Bug (CVE-2022-29077)

15

● push_front operation
○ Double-linked list
○ Inserting a node in the front of the list

next next

prev prev

next

prev

next

prev

next next

prev prev

next

prev

next

prev

next nodeprev node

OOB Write Internal

16

3 slides before the
DoS attack

ARRIVED

xxx_node xxx_node

From OOB to RCE

17

First Instinct
● Search for similar double-linked lists
● Insert to that list
● Make a type (c++ obj) confusion

m_lists[0]

m_lists[1]

...

Endpoint

...

x x x

xxx_list Endpoint xxx_node

Endpoint

Endpoint

xxx_node

x x x

From OOB to RCE

18

● push_front operation
○ No consistency check
○ No need to be a real double-linked list

next next

prev prev next

prev

next

prev

next next

prev prev next

prev

next node
prev node

From OOB to RCE

19

● List all gadget addresses that won’t trigger SEGFAULT

next next

prev prev next

prev

m_lists[0]

m_lists[1]

...

Endpoint

...

x x x

Endpoint

Endpoint

x x x

x x x

[Bonus] DoS Exploit

20

...

io_service_

m_lists[]

const bool one_thread_;
mutable mutex mutex_;
event wakeup_event_;
reactor* task_;
......

impl_

0x08 impl_

0x00 service_registry_

faked
object

...

io_service Obj

Lock won’t be
released
anymore !

io_service_impl Obj

...

● Deadlock leads to DoS.
● Service restarts after 10 mins.

next node prev node

Exploit Development

21

8 slides before the
node server was

EXPLOITED

RCE Exploit

● Fake an endpoint obj into vtable.
● Control flow hijacking Gadget:

○ call qword ptr [rax+0x10]
○ call qword ptr [rax+0x60]
○ call qword ptr [rax+0A0h]
○ call qword ptr [rax+0A8h]
○ call qword ptr [rax+0B8h]

next

prev

next next

prev prev next

prev

vtable_ptr

0x00

0x10

0x20

0x30

hops protocol

ip_address

- port

- -

22

Heap Spraying

23

Challenges
● Limited interfaces which accept

binary bytes as input.
● Strict management of object

lifetime.
● Always avoiding potential DoS

vulnerability.

Controllable Payloads

Heap Spraying

24

Long-term memory preallocation
● Endpoint

○ “ipv6 address” field
○ must follow the validation verifications
○ only last for 30 seconds

● Transaction
○ “Condition” field
○ 250 trasactions in queue at most
○ will be broadcast into the whole network

Heap Spraying

25

● Manifest
● Go deeper into Protobuf

Heap Spraying

26

● Manifest
● Go deeper into Protobuf

Heap Spraying

27

● Long-term object? Creating an acceptable manifest is hard.

The "manifest" is a block of data that
authorizes an ephemeral signing key
with a signature from the validator's
master key pair.

Heap Spraying

28

● No need to be acceptable.
● Construct messages filled with

80000+ manifests. (max 64MB)
● Allocations last for 1-2s.

. . .

Heap Spraying

29

● No regular memory holes

● Instead,
○ Send two 64 MB Manifest messages.
○ Send one malformed Endpoints message.
○ Send another two 64 MB Manifest messages.

… …

…

… … …

80000+ heap chunks

RCE Exploit

30

Exploiting Estimation

31

For exploiting one
victim node

Network traffic 1220MB

Time cost 12minutes

For exploiting the
entire network
(1000 victims)

Network traffic 1191GB

Time cost 9 Days

Post-Exploitation of
Blockchain Infrastructure

32

ne slide before
the exploit was

DEMONSTRATED
O

Gaining profit from RCE

33

● Plan A: Stealing wallet credentials which are possibly stored
on the compromised servers.

● Plan B: Stealing assets from exchanges by controlling their
XRPL node servers.

● Plan C: Gaining profit through double-spending attacks after
taking control of enough validators.

● Plan D: Hijacking some critical logic of compromised servers,
such as:
○ Altering the logic of transaction verification which will introduce a super

backdoor that allows arbitrary transactions constructed by the attackers
to be accepted even if they are illegal.

○ Altering the logic of balance calculation to stealthily increase the balance
of a specific address over time.

Demo video

34

Demo video

35

The Ending

36

● A silent patch without explicit vulnerability information.
● Timeline

○ Jan 18, 2022: The bug was reported and confirmed.
○ Jan 24, 2022: The fix was issued and tested.
○ Feb 08, 2022: A new release of rippled including the fix was out.

Acknowledge

● Ripple Team
● Yang Yu and Kai Song, Tencent Security Xuanwu Lab

Thank you!

37

