
Max ‘Libra’ Kersten | Malware Analyst | Trellix

Feeding Gophers to Ghidra



2

Table of contents

● About me

● Java

● Understanding Ghidra

● Languages and difficulties

● Golang

● Live demo

● Q&A



About me

3

o Max ‘Libra’ Kersten (@Libranalysis, @libra@infosec.exchange)
o Malware analyst and reverse engineer
o Working for Trellix’ Advanced Research Center

o Published DotDumper

o I write blogs about reverse engineering
o Including my free Binary Analysis Course

o My tools are open-sourced on GitHub
o Such as AndroidProjectCreator and the Mobile Malware Mimicking Framework

https://twitter.com/Libranalysis
https://infosec.exchange/@libra
https://github.com/advanced-threat-research/DotDumper
https://maxkersten.nl/
https://maxkersten.nl/binary-analysis-course/
https://github.com/ThisIsLibra/
https://maxkersten.nl/projects/androidprojectcreator/
https://github.com/ThisIsLibra/m3


4

About Gophers

● The official Golang mascot
● No Gophers were harmed during the 

research

Created by Renee French, more info on the Golang blog

http://reneefrench.blogspot.com/
https://blog.golang.org/gopher


5

About Ghidra

● Software reverse-engineering 
framework

● Created by the NSA
● Open-sourced in 2019



Java

6

● Ghidra’s native tongue
○ Jython supports Python 2.7, and is included by default
○ Python 3 bridges exist as external plug-ins

● Not the most favoured language
○ Though it is by me

● Java and Jython related code can be debugged in Eclipse
○ With the Ghidra-dev plug-in



7

Understanding Ghidra

● Live demo



Languages and difficulties

8

● Approaches to binary languages
○ Differ based on the architecture
○ Contain re-used and unique concepts
○ No magic catch-all solution

● Cross-platform capabilities
○ Are a double-edged sword
○ Easy-of-use for developers
○ Multi-architecture analysis required
○ Re-used concepts save time



Golang

9

● The Golang runtime is embedded
○ Statically compiled

● Compiler allows the creation of stripped binaries
○ Though they actually aren’t

● Cross platform compatibility



Golang analysis

10

● Difficult to see what is (not) runtime related
● Disassembly and decompiled code are cluttered
● Often approached as a C-like binary

○ Can be done successful
○ Begs the question: is the invested time worth it?

● Interested in
○ Strings
○ Functions
○ Types



Golang analysis scripts

11

● Based on the public work of Dorka Palotay
○ She works for CUJO

● This is not the first project to use (similar) concepts

https://github.com/getCUJO/ThreatIntel/tree/master/Scripts/Ghidra
https://www.youtube.com/watch?v=665s78Kmy4E
https://cujo.com/


Golang analysis approach

12

● Static string recovery
● Dynamic string recovery
● Function name discovery and recovery
● Type recovery



Static string recovery

13

● Iterates over .rodata and .data
● Performs sanity checks
● Creates the string (pointer)



Dynamic string recovery

14

● Pattern based instruction matching
○ On a per architecture basis

● Parses instructions
○ Gets the operand values

● Creates the string (pointer)



Function name recovery

15

● Searches for the pclntab
● Parses said tab
● Creates or renames functions



Type recovery

16

● Searches for different sections and structures
● Parse said structures
● Rename corresponding types



17

Results – SwiftSlicer

0,05%

98,0%

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

Known functions by Ghidra Known functions with the script



Live demo
18



Q&A
For questions, you can also reach out to me via @Libranalysis, 

@libra@infosec.exchange, or Max Kersten on LinkedIn

19

https://twitter.com/Libranalysis
https://infosec.exchange/@libra
https://www.linkedin.com/in/thisislibra/

	Slide 1: Feeding Gophers to Ghidra
	Slide 2: Table of contents
	Slide 3: About me
	Slide 4: About Gophers
	Slide 5: About Ghidra
	Slide 6: Java
	Slide 7: Understanding Ghidra
	Slide 8: Languages and difficulties
	Slide 9: Golang
	Slide 10: Golang analysis
	Slide 11: Golang analysis scripts
	Slide 12: Golang analysis approach
	Slide 13: Static string recovery
	Slide 14: Dynamic string recovery
	Slide 15: Function name recovery
	Slide 16: Type recovery
	Slide 17: Results – SwiftSlicer
	Slide 18: Live demo
	Slide 19: Q&A

