
Davide Ornaghi | Offensive Security Specialist | Betrusted
1

The Return of Stack Overflows in the Linux Kernel

2

Davide Ornaghi - @TurtleARM97

● Offensive Security Specialist at Betrusted

● Instructor for malware analysis and penetration testing
seminars

● MSc in IT Security, CEH Master, OSCP, OSWP

● 0-day enjoyer

3

Agenda

● Trends in Linux 0-days

○ Vulnerability classes and components

● Analysis of recent kernel vulns

○ Main security mitigations

● The anatomy of a successful Stack Overflow

○ Bypassing security controls

○ Leaving the interrupt context

● Mitigating the risk inside our kernels

Trends in Linux 0-days

4

Vulnerability distribution by class

5

Linux 3.x and 4.x

Stack Overflow Heap Overflow

Use-after-free Race condition

Linux 5.x and 6.x

Stack Overflow Heap Overflow

Use-after-free Race condition

Vulnerability distribution by class – source?

6

Vulnerability distribution by component

7

Linux 3.x and 4.x

KVM Netfilter Keys
Alsa Perf BPF

Linux 5.x and 6.x

KVM Netfilter Overlayfs

Sound TTY BPF

Analysis of recent kernel vulns

8

CVE-2022-0435 – A Stack Overflow in TIPC

● TIPC nodes share domain topology information with peers

● Each node stores the most recent domain record from its
peers

● The rcv function doesn’t check for maximum size of domain
members

● The received domain record overflows a 272-bytes buffer
on the stack 800-byte overrun

9

CVE-2022-0435 – A Stack Overflow in TIPC

10

Pre-overflow:

CVE-2022-0435 – A Stack Overflow in TIPC

11

Post-overflow:

CVE-2022-0435 – A Stack Overflow in TIPC

● Exploit is remotely triggerable

● Can overwrite the saved RIP

● Powerful exploit primitive

● Cannot corrupt nearby frames, where to pivot?

○ set_memory_x()?

● Exploitation requires disabling CONFIG_STACKPROTECTOR
and CONFIG_RANDOMIZE_*

12

CVE-2022-0435 – A Stack Overflow in TIPC

● ?

13

What else is there?

● KPTI
○ Introduced in 2017
○ Separates page tables between user/kernel mode

● SMEP/SMAP
○ Segregates user mode pages from kernel mode

● FG-KASLR
○ Introduced in 2020, not widely implemented
○ Higher-granularity KASLR

● Per-syscall kernel-stack offset randomization
○ Shifts the kernel stack upon syscalls

14

The anatomy of a successful Stack Overflow

15

Bypassing security controls

● KPTI
○ Restore userland page tables: KPTI trampoline
○ User mode helpers (core_pattern, modprobe_path)

● SMEP/SMAP
○ Never rely on any payload from userland

● FG-KASLR
○ Use symbols from the (.text, .text + 0x400dc6) range
○ Use leaks from the __ksymtab
○ The .data section is still at .text + k, user mode helpers!

● Per-syscall kernel-stack offset randomization
○ One-shot exploit
○ Start from the interrupt context

16

An outstanding exploit - CVE-2022-1015

● Nftables subsystem, the newer version of iptables
● OOB r/w primitive on the stack
● Can use the nft_bitwise expression to read/write up to

0x40 bytes starting from &nft_regs + [0x3c0, 0x43c]
● Input chain will end up in the interrupt context, the output

one in the syscall context
● Infoleak from syscall context, memory corruption from the

interrupt context

17

The infoleak

Read OOB into the user NFT registers, where they can be
accessed later:

18

Arbitrary code execution

● Goal: Find a return address on a stack frame we can OOB
write to

● Constraint: leave any stack canary untouched

● Switch between input and output hooks, UDP/TCP/IP
packets to find a suitable stack frame

19

Arbitrary code execution

20

Stack frames from the irq stack, sending a UDP datagram:

A different approach – CVE-2023-0179

21

A different approach – CVE-2023-0179

22

● Classical stack overflow in the Nftables component
(Netfilter)

● Weak exploit primitive: 251-byte overrun starting from
struct nft_regs regs in the nft_do_chain function

● Not enough for stack smashing

The infoleak

23

● Use REG00 as destination register for the overflow
● Search for kernel addresses to defeat KASLR

Memory corruption

24

● Overwriting adjacent memory leads to a protection fault
● A second look revealed a reachable function pointer

Arbitrary code execution

25

● We control the expr pointer which will be eval’d
● Can jump to arbitrary locations

The ROP chain: the issues

26

● Enough space is needed to store our payload

● We do not want to touch userland (no ret2usr)

● NFT registers only offer 64 bytes of storage
○ Insufficient for a full ROP chain (gadgets + pushed regs)

● Controlling the expr pointer is space consuming

The ROP chain: the solution

27

memcpy also includes our payload in the source data, the
controlled space can be doubled!
1. Setup the NFT registers with the stack pivot payload (stage 1)
2. Trigger the vuln, causing the payload to move into the

jumpstack (an adjacent structure)
3. Refill the NFT registers with the actual ROP payload (stage 2)
4. Redirect execution to stage 1, which will then jump to stage 2
5. User mode helpers!
6. Leave the clobbered functions without panicking

The ROP chain: the solution

28

Furthermore:

● RANDOMIZE_KSTACK_OFFSET does not apply to softirq

● Stack pivoting is fairly easy with low offsets (function
epilogues)

● KASLR leak stays valid until reboot

Leaving the interrupt context

29

● swapgs_restore_regs_and_return_to_usermode is not
available from softirq

● Deadlocks can be ignored since the network interface will be
immediately disabled

● The old syscall stack is restored inside do_softirq()

● Any function between the last corrupted one and do_softirq()
can be used as the return target

Leaving the interrupt context

30

One possible solution is function #5, nf_hook_slow

Mitigating the risk inside our kernels

31

Workarounds

32

● Reduce the user mode helpers attack surface
(CONFIG_STATIC_USERMODEHELPER)

● In-kernel pointer authentication on ARMv8.3+ (since Linux 5.7)

● Per-softirq kernel stack randomization?

Entering the interrupt context

33

User context:

Entering the interrupt context

34

Syscall context:

Entering the interrupt context

35

HardIRQ context:

Entering the interrupt context

36

SoftIRQ context:

Per-softirq kernel stack randomization

37

SoftIRQ context:

Putting it all together

38

Stack overflows in the Networking subsystem are still considered
powerful since:

● Developers still trust CAP_NET_ADMIN

● RANDOMIZE_KSTACK_OFFSET doesn’t work in softirq
○ KASLR leak is reusable

● They easily lead to RCE

Thank you

39

