
Peter “blasty” Geissler // https://haxx.in/
1

SMART SPEAKER SHENANIGANS:
MAKING THE SONOS ONE SING ITS SECRETS

2

Introduction
• Wanted to hack SONOS One for Pwn2Own 2022.

• Started too late, got seriously sidetracked before having spent
even a single minute doing Vulnerability Research.

• This research happened!

3

$ whoami
• Independent security researcher from the Netherlands

• Fourth(?) time giving a talk at HITB (KUL, AMS)

• @bl4sty on the twitters

4

Sonos One Gen2
UART

Mini PCIe

eMMC flash

AMLogic A113D SoC

DDR4 DRAM

5

Locked down U-boot
• Sonos at some point decided they didn’t want people to access their

(already locked down) U-Boot prompt anymore.

• Interrupting boot via UART now asks for a password.. which we don’t have..

eMMC BGA meets hot air

6

not bad for someone who

normally only does the

keyboard typey stuff

pinebook pro eMMC adapter

rootfs get? we can start VR now?

(not) extracting the rootFS

7

● The /init script tells us the root filesystem is a LUKS
encrypted volume and the ‘key-file’ is embedded as a
plaintext string.

huh?

8

SONOS LUKS Modifications
• Treasure trove of info to be found in the GPL/LGPL downloads

published by SONOS:

• https://www.sonos.com/documents/gpl/14.4/gpl.html

• LUKS support in Linux Kernel has been hacked up to support
hardware assisted key generation

• The routine that does this is called sonos_blob_encdec and
uses a vendor specific Secure Monitor Call (SMC) that is
handled by code running in EL3.

https://www.sonos.com/documents/gpl/14.4/gpl.html

9

Lenovo Smart Clock

TSOP 48 NAND IC

(sorry for fluxxy reflow mess)

AMLogic A113X SoC

UART

stupid IoT alarm clock

10

A113X
• Quadcore ARM Cortex A5-3 (Aarch64) SoC by AMLogic

• Voice recognition without external DSP

• Ethernet MAC, USB 2.0, SDIO Controller, UART, I2C, SPI..

• Supports TrustZone

ARM Trusted Firmware

11

● Reference implementation for trustzone/secure world
● Adapted by many vendors and OEMs when implementing

things like secure boot
● https://github.com/ARM-software/arm-trusted-firmware

https://github.com/ARM-software/arm-trusted-firmware

12

ARM Trusted Firmware
Trusted World Normal World

BL1

Boot ROM

BL2

Trusted Boot Firmware

BL31

EL3 Firmware

BL32

EL1 Payload

BL33

(U-boot)

Linux Kernel

13

A113X Boot Flow
Read POC Pins

POC1 = 0?

POC2 = 0?

Probe eMMC

Probe NAND

Probe SD

USB Boot

USB Boot

SPI Boot

eMMC Boot

NAND Boot

SD Boot

timeout

fail

fail

fail

fail

timeout
yes

yes

yes

yes

yes

14

AMLogic USB Recovery
• Method for loading BL2 image over USB

• Custom protocol using USB control transfers supporting a
handful of commands/operations.

• Command opcode goes into bRequest, addresses/offsets are
stuffed into wValue and wIndex

• Opensource implementation called pyamlboot available:
https://github.com/superna9999/pyamlboot

https://github.com/superna9999/pyamlboot

15

AMLogic USB Recovery Commands
0x01: REQ_WRITE_MEM

0x02: REQ_READ_MEM

0x03: REQ_FILL_MEM

0x04: REQ_MODIFY_MEM

0x05: REQ_RUN_IN_ADDR

0x06: REQ_WRITE_AUX

0x07: REQ_READ_AUX

Peek & Poke SRAM

Run BL2 image at address

Peek & Poke (some) MMIO

16

Secure Boot Decryption Oracle
• Loading BL2 data over USB is done using the

REQ_WRITE_MEM command in chunks of 64 bytes.

• After sending the final chunk REQ_RUN_IN_ADDR is used to
kickstart the BL2 image decryption, verification and parsing.

• Image decryption happens in place.

• If verification in REQ_RUN_IN_ADDR fails, BL1 still accepts
additional commands

• .. and does not bother to clear decrypted contents in SRAM.

17

Secure Boot Decryption Oracle Continued..

• We can REQ_READ_MEM after a failed
REQ_RUN_IN_ADDR to read back decrypted image contents.

• Blackbox poking revealed it uses a block cipher with a block
size of 16 bytes that exhibits properties of a block cipher used
in CBC mode.

• We can use this oracle to decrypt BL2 images, and anything
that is encrypted with the same key/algorithm!

18

FIP Unpacking

Load FIP HDR from NAND, src: 0x0000c000, des: 0x01700000, size: 0x00004000, part: 0

Load BL3x from NAND, src: 0x00010000, des: 0x01704000, size: 0x000b0e00, part: 0

NOTICE: BL31: v1.3(release):d3a620ec3

NOTICE: BL31: Built : 10:32:40, Jan 20 2021

NOTICE: BL31: AXG secure boot!

NOTICE: BL31: BL33 decompress pass

• The ‘FIP’ is a table containing offsets/sizes of the various BL3x blobs.

• Using the decryption oracle we can decrypt the FIP + all BL3x data

struct fip_entry_t {

 uint8_t uuid[0x10];

 uint64_t offset;

 uint64_t size;

 uint64_t flags;

};

19

FIP Unpacking
$ python3 fip.py mtd1_dec.bin fip_out

#00: 9766fd3d89bee849ae5d78a140608213 - offs: 00004000, size: 0000d800

#01: 47d4086d4cfe98469b952950cbbd5a00 - offs: 00011800, size: 00031600

#02: 05d0e18953dc13478d2b500a4b7a3e38 - offs: 00042e00, size: 00000000

#03: d6d0eea7fcead54b97829934f234b6e4 - offs: 00042e00, size: 00072000

#04: f41d1486cb95e6118488842b2b01ca38 - offs: 00000188, size: 00000468

#05: 4856ccc2cc85e611a5363c970e97a0ee - offs: 000005f0, size: 00000468

• 9766fd3d89bee849ae5d78a140608213 = BL30 (SCP)

• 47d4086d4cfe98469b952950cbbd5a00 = BL31

• 05d0e18953dc13478d2b500a4b7a3e38 = BL32 (empty)

• d6d0eea7fcead54b97829934f234b6e4 = BL33

20

BL31
• Our goal is to dump the OTP/eFUSE data and BootROM. So

we need to compromise the EL31 secure monitor somehow.

• The ATF reference implementation easily allows vendors to
implement their own platform-specific EL3 services through the
SMC instruction.

• This is called ‘ARM SiP Services’ in ATF speak.

• Good candidate to start auditing!

21

BL31 - Finding the SiP handlers
• SMC calls in ATF are divided up into these things known as

“services”.

• Services are registered in a table of rt_svc_desc objects.

• rt_svc_desc conveniently has a name field pointing to a name
for the service. in AMLogic EL3 blobs the SiP service is called
sip_svc.

• rt_svc_desc->handle points to the SMC call dispatcher for
the service.

22

BL31 - Vendor SMC overload
• 115 custom SMC’s, wow!

• Service handler is a basically a big switch() table looking for the SMC ID and
dispatching to the correct functions.

• Function pointers are looked up in a big table I call `platform_ops`. The pointer
to `platform_ops` itself lives in .data and is initialised from the SiP service init
routine.

• A lot of the custom SMC’s turn out to be no-ops or boring boilerplate stuff like
retrieving a pointer to shared memory buffers and such.

• Remaining SMC’s relate to (surprise) cryptographic operations, limited access to
some OTP/eFUSE fields and a cluster of routines related to “secure storage”.

23

Secure Storage
• Secure storage facilitates a way of having key/value pairs

encrypted with an AES key that is never visible to the normal
world.

• Linux (or any other OS running in EL2) can query the secure
storage, and read/write to/from it using vendor specific SMC
calls.

• This secure storage lives in (shared) memory, it is the Normal
World OS’ job to persist it (if needed) to non volatile storage.

24

Secure Storage SMC
• 0x82000061 - SIP_CMD_STORAGE_READ

• Read an item from the secure storage. Item requested by name/key.

• 0x82000062 - SIP_CMD_STORAGE_WRITE

• Write/update an item in the secure storage.

• 0x82000067 - SIP_CMD_STORAGE_LIST

• Get a list of all items (names/keys) in the secure storage

• 0x82000068 - SIP_CMD_STORAGE_REMOVE

• Remove an item from the secure storage.

• 0x82000069 - SIP_CMD_STORAGE_PARSE

• Parses an encrypted secure storage blob. 
Invoked as the first thing before you can access the storage.

25

Secure Storage Parser
• the parser SMC accepts a single argument, the size of the

encrypted storage blob.

• the actual encrypted storage blob data is passed in a shared
memory buffer at a fixed address (retrieved using SMC
0x82000025)

• blob starts with a plaintext header

26

Secure Storage Parser

struct storage_header {

 uint8_t magic[0x10];

 uint32_t key_version;

 uint32_t key_mode;

 uint8_t body_hash[0x20];

 uint8_t padding[];

}

• following the header starts the encrypted body.

• if hdr.key_version > 0, compute sha256(encrypted_body)
and compare against hdr.body_hash.

“AMLSECURITY”

27

Secure Storage Parser Key Selection

if storage_header.key_mode == 0:

error()

if storage_header.key_mode == 1:

AES Key = fixed 32 byte value from bl31 .data section

AES IV = all zeroes

else:

AES Key = CPUID + fixed 20 byte value from bl31 .data section

AES IV = CPUID + fixed 4 byte value from bl31 .data section

28

Secure Storage Parser Continued
• First it will decrypt a single 0x200 sized block at start of encrypted body,

containing some global parameters.

• These are serialised as a nested TLV (Type, Length, Value) structure. (u32
type, u32 length, u32 value)

• The outer TLV of this param block must have type TYPE_PARAM_HEADER
(0x1)

• The body of the PARAM_HEADER TLV should contain a single TLV of type
TYPE_ENCRYPTED_SIZE (0x2) indicating the size of the rest of the body.

• Following the param block are the actual storage entries, also encoded as a
list of nested TLVs.

29

Storage Entry Structure
• Storage entries always have an outer TLV with type TYPE_KEY_DEFINITION (0x3)

• The inner body of this TLV contains the storage entry properties.

Type Name Description
0x4 NAME_SIZE length of the name
0x5 NAME_DATA actual name
0x6 VALUE_SIZE length of the value
0x7 VALUE_DATA the actual value data
0x8 KEY_TYPE 32bit value indicating the “type” of value
0x9 BUFFER_STATUS 32bit value indicating whether value is “dirty”
0xa HASH_DATA a 0x20 byte SHA256 hash over the value data

30

Storage Entry Structure
• Internally, all parsed keys get stored in a fixed size of

key_entry objects.

struct key_entry {

 uint8_t name[0x50];

 uint32_t name_len;

 uint32_t buffer_status;

 uint32_t key_type;

 uint32_t value_size;

 uint8_t* value_ptr;

 uint8_t hash[0x20];

 uint32_t key_in_use;

 uint32_t unknown;

}

section .data:

…

struct key_entry g_keys[64];

…

31

Secure Storage Parser Loop

abbreviated snippet of storage parser main loop

32

Secure Storage Parser Loop

abbreviated snippet of storage parser main loop

index g_keys using
global g_keys_count

variable.

increment global
g_keys_count, no

upper limit!

33

Secure Storage Exploit
• Initially tried to use this overflow to smash `platform_ops`

pointer, at the very end of .data -> no bueno.
• Requires about ~3740 keys and destroys a lot of pointers with uncontrolled data due to

unfortunate alignment.

• Study the layout of .data more carefully:

..

0000: uint32_t g_keys_count;

0004: key_entry g_keys[64];

2404: uint64_t g_key_version;

240c: uint8_t param_sector_decrypted[0x200];

..

34

Key lookup

35

Key lookup

key_index should not
exceed g_keys_count.

36

Parse Storage Revisited

37

Parse Storage Revisited

all (64) keys get zeroed
if parsing the param

sector fails

after (successfully)
parsing the param

sector, g_keys_count
gets reset to zero.

38

Forging key_entry objects
• If we invoke SIP_CMD_STORAGE_PARSE a second time we

can control what ends up in param_sector_decrypt buffer

• Effectively, this lets us forge arbitrary key_entry objects.

• To prevent g_keys_count from being reset to zero (rendering
our forged key_entry objects unreachable) we make the param
parser fail.

• this can be done by simply not having the right root TLV type
at the start of the param block.

39

Forging key_entry objects
Offset Field Value
0x00 name “HAXX”
0x50 name_len 4
0x54 buffer_status 0
0x58 key_type 0
0x5c value_size 8
0x60 value_ptr ANY_POINTER
0x68 hash 0x00 * 32
0x88 key_in_use 1
0x8c unknown 0

40

Powerful primitives
• SIP_CMD_STORAGE_READ for key ‘HAXX’ -> read64

• SIP_CMD_STORAGE_WRITE for key ‘HAXX’ -> write64

• We can now hijack the platform_ops pointer using our write64
primitive to redirect control flow for the SiP SMC dispatcher!

41

Dumping the OTP/eFUSE data
• The SiP SMC dispatcher for SMC ID 0x820000ff will pass

the original SMC arguments (X1, X2, X3, ..) as-is to relevant
function from the platform_ops table (in X0, X1, X2..)

• So by making a copy of the platform_ops table and only
hijacking the entry for SMC ID 0x820000ff we can introduce
a call3 primitive.

• call3(aml_scpi_efuse_read, SOME_DRAM_ADDR, 0, 0x100)

42

Dumping the BootROM - Pagetables
• Leaked/borrowed A113X datasheet tells us BootROM physical

address is 0xffff0000.

• BL32 seems to be using a minimal MMU setup with identity
mapped pages (PA = VA)

• Reading 0xffff0000 using read64 primitive doesn’t work.

• Let’s learn about Aarch64 memory model, but not too much.

• Explained in a bit more detail in upcoming blogpost!

43

Dumping the BootROM - Pagetables
• EL3 Level 1 page table address is configured by writing to the

special register TTBR0_EL3.

• Other important aspects of translation are configured through
TCR_EL3.

• Decoding the TCR_EL3 value BL32 writes reveals we have a
32bit space address with a 4KiB page granule.

• This means level1 page table only covers bits 30 and 31 (4
entries).

44

Dumping the BootROM - Pagetables
• We want to map 0xFFFF0000 → 0xFFFFFFFF so we follow
TTBR0_EL3[3] (it spans 0xc0000000-0xffffffff) to find
level2 table address.

• Level 2 table is indexed with bits 21:29 (9 bits) of the virtual
address. We calculate the index we are interested is in is 0x1ff.
(entry 0x1ff covers 0xFFE00000-0xFFFFFFFF)

• We now reach the level 3 table, no more table indirection is
allowed here.

45

Patching the EL3 pagetables

A113X BootROM Get!

46

$ sha256sum < a113x_bootrom.bin

7d1f63f6ddec05f538243aaa532c0503517de8ce9d2033d2b36b6c79695be626 -

47

Porting the exploit to Sonos One: DMA
• We can use specialized PCI express hardware to gain R/W

access to DRAM using DMA.

• Not new, documented by Synacktiv and others.

• PCILeech by @UlfFrisk and overpriced hadrware makes this
easy

USB3380 evaluation board

PCIe gen2 1x to USB 3.0

48

Rooting Linux, p0ly DMA style
• Patch `poweroff_cmd` string with arbitrary userland command

• Patch `vfs_read` to replace a call to `rw_verify_area` with a call to
`orderly_poweroff`

• The next invocation to `vfs_read` (frequent) will execute the
command in `poweroff_cmd`

• Use this to busybox wget && busybox sh a shellscript

• start telnetd

• make /etc r/w and update root password in /etc/passwd

49

Porting the exploit to Sonos One: LKM

• On Lenovo we ran the EL31 exploit from U-boot as a
standalone payload.

• On Sonos we’ll run it as a Linux userland program: we will
introduce a simple Kernel Module that allows us to execute
arbitrary SMC’s and write to the various shared memory
buffers via debugfs

50

Porting the exploit to Sonos One: BL31

• One other problem is we don’t have the BL31 .text/.data for
Sonos to look at (yet).

• Luckily, the .data layout for the keys[] array and the params
scratch buffer is identical.

• Our read64 primitive setup works with zero modifications!

• We use read64 to dump out the BL31 .text/.data and
adjust offsets accordingly.

51

EL31 Exploit Demo

52

OTP Layout
0000: 0000 0000 0301 f6e3 441c cfb7 7bb2 f1f5 ; 04-0f = CPU_ID

0010: 2309 0000 6676 bc00 1000 190d 84be 797b

0020: 9601 4ed3 460b 0a13 6dc0 d9fa fb05 c92e ; SBOOT_KPUB_SHA256

0030: 6cc0 5edf 9c7c 83be 1620 c270 62c9 39c3

0040: 9609 2f09 ad8f 9420 5ec3 e7b1 5504 ae5c ; SBOOT_AES256_KEY

0050: c1cd 7453 0d09 570f b86b 26c1 aee4 5b01

0060: a570 6ab7 06c3 64f5 a570 6ab7 06c3 64f5 ; JTAG_PASSWD_SHA_SALT

0070: 3f18 9083 97ee ce24 3f18 9083 97ee ce24 ;

0080: 9a44 f16d 6cb2 8a07 9a44 f16d 6cb2 8a07 ; SCAN_PASSWD_SHA_SALT

0090: 45b6 0cc7 8451 6023 45b6 0cc7 8451 6023

00a0: 0000 0000 0000 0000 0000 0000 0000 0000

00b0: 0000 0e03 0021 4701 0000 0000 0000 0000 ; FEATURE BITS

00c0: 0000 0000 0000 0000 0000 0000 0000 0000

00d0: 17aa 4a85 fe72 96bd 17aa 4a85 fe72 96bd ; AES GCM HWKEY

00e0: 21bd 78fb 0aa8 f069 21bd 78fb 0aa8 f069 ; ???

00f0: a7ae f5b0 abd1 107a 0000 0000 0000 0000 ; GP_REE

53

Offline LUKS volume decryption

• The Sonos flash image stores some device specific provisioning
data in a blob called the ‘MDP’ -> Manufacturing Data Pages

• There is MDP1, MDP2 and MDP3. All have their own structure.

• The structure of the MDP data can be decoded by following the
GPL code released by Sonos (thanks @alexjplaskett)

• We can find the encrypted root FS and JFFS decryption keys in
MDP3. (offset 0x680 and 0x580)

54

Decrypting the decryption keys

• The encrypted root FS and JFFS decryption keys are fed through the
`sonos_blob_encdec` kernel interface to retrieve the decryption keys.

• sonos_blob_encdec:

• invokes a crypto routine that is implemented inside of BL32 (EL3)

• does a AES-256-GCM decryption of the blob

• the AES-256 key is SHA256(AES GCM HWKEY from OTP)

• the AES GCM IV is constructed by taking the trailing 12 bytes of the
blob and xor’ing it with “rootfs\x00\x00” or
“ubifs\x00\x00\x00” (rolling key)

55

LUKS Key Deobfuscation

obtained from decrypting MDP3 data

sentinel prefix selects whether we are

dealing with the root FS key or the JFFS key

galaxy brain crypto

Mounting LUKS images using expanded AES key

56

● The key we obtained is the final expanded AES key, I haven’t found an
easy way to feed this into `cryptsetup luksOpen` .. maybe a case of RTFM
failure?

● LUKS Images are 2MiB aligned. This means the actual encrypted data
starts at 0x200000 (after the LUKS header and LUKS key slot data)

● We can create a loopback device for our encrypted disk image, offsetting
the LUKS header.

● Next, we use our OTP dump + MDP data and knowledge of the key
decryption and obfuscation to obtain the actual AES key.

● Finally, we just invoke `dmsetup create` with the correct device
specification and AES key.

57

$ pw="oht8Quo1maiX8jahIceeli6izuSahgh0pilooZ7uaid7Rooxeeh0Li8eeXiec8ir"

$ echo -n $pw | sudo cryptsetup luksOpen --readonly --key-file - ./luks_0x1800000.bin sonos-root

$ sudo dmsetup table --showkeys | grep sonos-root

sonos-root: 0 7417856 crypt aes-xts-plain64 ffffffffffffffffffffffffffffffff11957298127903752336b4c2263c0f4c 0 7:30 4096

$ OBFUSCATED_KEY=ffffffffffffffffffffffffffffffff11957298127903752336b4c2263c0f4c

$ python3 sonostool.py -m mdp3.bin -o sonos_efuse.bin luks_key $OBFUSCATED_KEY

LUKS AES KEY: 5d647aa69669479ebff08fa64fb47355c1414b40c7f26ef316063044a18373b3 (rootfs)

$ LUKS_AES_KEY=5d647aa69669479ebff08fa64fb47355c1414b40c7f26ef316063044a18373b3

$ SKIP=$[1024*1024*2]

$ sudo losetup -o $SKIP -f $(pwd)/luks_0x1800000.bin

$ sudo losetup -l | grep luks_0x1800000.bin

/dev/loop15 0 2097152 0 0 /home/user/sonos_nand/luks_0x1800000.bin 0 512

$ wc -c /home/user/sonos_nand/luks_0x1800000.bin

3800039424 /home/user/sonos_nand/luks_0x1800000.bin

$ NUM_SECTORS=$[(3800039424 - $SKIP)/512]

$ echo "0 $NUM_SECTORS crypt aes-xts-plain64 $LUKS_AES_KEY 0 /dev/loop15 0" | sudo dmsetup create sonos-plain

$ sudo xxd /dev/mapper/sonos-plain | head -n8

00000000: 6873 7173 3902 0000 15a8 a661 0000 0200 hsqs9......a....

00000010: 3900 0000 0500 1100 c004 0100 0400 0000 9...............

00000020: 4513 3c1d 0000 0000 89c9 6302 0000 0000 E.<.......c.....

00000030: 81c9 6302 0000 0000 ffff ffff ffff ffff ..c.............

00000040: df7b 6302 0000 0000 2d9f 6302 0000 0000 .{c.....-.c.....

00000050: 62c0 6302 0000 0000 73c9 6302 0000 0000 b.c.....s.c.....

00000060: 0880 0100 0000 0100 0000 847f 454c 4602 ELF.

00000070: 0101 0001 0040 0200 b700 0e00 31b0 be40 @......1..@

real nerds will recognize

this is squashfs magic

from plaintext init script

58

SONOS OTA: HTTP
• HTTP GET https://update.sonos.com/firmware/latest/default-1-1.ups and a

very big querystring

• The querystring contains a lot of (sensitive) values like the serial number
and various ID’s belonging to your Sonos device..

• turns out they are not actually checked (for now?), serial 111111111
works fine etc. :)

• response is a custom binary manifest with a TLV-like structure

• one of the manifest entries is a URI base for the actual firmware blob

• simply append the correct (sub)model numbers and you can fetch it

https://update.sonos.com/firmware/latest/default-1-1.ups

59

SONOS OTA: Crypto
• We decrypt the RSA private(!) ‘model key’ from our MDP3 data using

the sonos_blob_encdec methodology.

• The OTA firmware blob (again) is a TLV-like structure. We skip sub-
blobs we don’t care about (metadata, signatures)

• Every blob with firmware data has an RSA encrypted AES-128 key
somewhere near the start we can decrypt using the decrypted RSA
private key

• The encrypted body of the firmware data chunks is decrypted using
AES-128-CBC using this key and an IV of all zeroes.

60

$ python3 sonostool.py -m mdp3.bin -o sonos_efuse.bin download fw

> downloading metadata

> downloading http://update-firmware.sonos.com/firmware/Prod/57.15-39070-v11.8-vghahcgk-GA-1/57.15-39070-1-26.upd

leech [**] 0x0260f9a4/0x0260f9a4

done!

$ python3 sonostool.py -m mdp3.bin -o sonos_efuse.bin decrypt_update fw/57.15-39070-1-26.upd ./fw_decrypted

entry #07 is encrypted fw blob! key: a26f2f7b46992b13b574f15d65ff692c

entry #08 is encrypted fw blob! key: f2d863e3cac5e3815e2dd1cfdef7fede

entry #09 is encrypted fw blob! key: 3d00db2ca53ae42f27126d162a834fba

entry #10 is encrypted fw blob! key: 35a496999a149adefd12e02bb88df6b9

done

$ file fw_decrypted/*

fw_decrypted/07.bin: POSIX shell script text executable, ASCII text

fw_decrypted/08.bin: data

fw_decrypted/09.bin: Squashfs filesystem, little endian, version 4.0, zlib compressed, 30799729 bytes, …

fw_decrypted/10.bin: data

$ tail -c +$[0x16d] fw_decrypted/08.bin|xxd | head -n8

00000000: d00d feed 0076 7888 0000 0038 0076 753c vx....8.vu<

00000010: 0000 0028 0000 0011 0000 0010 0000 0000 ...(............

00000020: 0000 006c 0076 7504 0000 0000 0000 0000 ...l.vu.........

00000030: 0000 0000 0000 0000 0000 0001 0000 0000

00000040: 0000 0003 0000 0004 0000 005c 6407 af0e \d...

00000050: 0000 0003 0000 0029 0000 0000 552d 426f )....U-Bo

00000060: 6f74 2046 4954 2049 6d61 6765 2066 6f72 ot FIT Image for

00000070: 2053 6f6e 6f73 2041 3131 3320 706c 6174 Sonos A113 plat

61

Take aways / Future work
• If you want to make a living out of selling bugs/exploits:

shaving unnecessary yaks is not always worth it..

• .. but if you have the energy/motivation: future proofing is
always nice! (prestige is a great motivation btw)

• Audit A113x bootrom and Sonos BL2 / U-boot for potential
entry points

• Add support to sonostool for other sonos products

Attribution / shout outs

62

● My lovely wife, who can maybe finally enjoy a working Sonos One
speaker once I properly re-assemble it.

● Peter Adkins (@Darkarnium) for his work on Sonos One and friendly
chats.

● David Berard (@_p0ly_) for blindly loading kernel modules I sent him
via twitter DM on his Sonos speaker. And of course his prior work on
rooting Sonos One via PCIe DMA!

● Alex Plaskett (@alexjplaskett) for nerd sniping me into OTA decryption
and letting me know about MDP structure being part of GPL tarballs
after I had painstakingly reversed the required bits by hand already. :)

Oh, a few more things..

63

● Someone plz crack this random sha256crypt hash I found:
5nw1dhDPJupVAC0eQ$Yw.mhRBDkfwd5gTJCmfq3uSv2XtLJAxnLO.ZGxjagv6

● Sonos might want to scrub their flash after factory
provisioning..

64

https://github.com/blasty/sonos

65

exploit & tool code ⬏

https://haxx.in/
writeup(s) ⬏

https://github.com/blasty/sonos
https://haxx.in/

Thank you! Questions?

E-mail: peter@haxx.in
Web: https://haxx.in/
Twitter: @bl4sty
Mastodon: @blasty@haxx.in

66

https://github.com/blasty/sonos

mailto:peter@haxx.in
https://haxx.in/
https://github.com/blasty/sonos

