7
#HITB2023AMS https://conference.hitb.org/ H]

/

023 ol
FIITIS D.

Automated Black-Box Security Testing of
Smart Embedded Devices
UNIVERSITY

Andrea Continella OF TWENTE.

N\

1
#HITB2023AMS https://conference.hitb.org/ |

N

O

Swhoami

Assistant Professor @ University of Twente - SCS group

Cybersecurity @ SCS
e Data Security
e Systems Security

Research Interests: Systems Security
e Malware Analysis & Defenses
e Threat Detection & Response
e Automated Security Testing & Patching

CTF Competitions
e Member of Shellphish & (previously) ToH & mhackeroni
e Mentor Twente Hacking Squad (THS)

1
#HITB2023AMS https://conference.hitb.org/ |

% Cooking today

/ Automated vulnerability research for smart embedded devices

- (Challenges in firmware testing
- Black-box fuzzing

- Device firmware update

- Conclusions & future directions

1
#HITB2023AMS https://conference.hitb.org/ |

% Today’s loT Landscape

aaaaa

1
#HITB2023AMS https://conference.hitb.org/ |

N

SUPPLY CHAIN SECURITY

Nuki Smart Lock Vulnerabilities Allow Hackers to Open

Doo 5T Botnets Fuel DDoS Attacks — Are You

] Prepared?

walking in

,@ - The Botnet That Broke the
o Internet Isn't Going Away

TechNewsWorld > Security > Privacy | Next Article in Privacy

Webcam Maker Takes FTC'
for Internet-of-Things Secu
Failure

20y old vulnerabilities are back!

Y=/ A TURING
¢ ST ALK DVERFLONs
. LSRN\ Az E T50
" RE S LANM

-~ RNSLR wnoe

https://conference.hitb.org/ |
Firmware Testing: Challenges

N

Hardware-dependent

Unique, minimal environments with non-standard
configurations

Several different architectures
e ARM, MIPS, x86, PowerPC, etc.
e Sometimes proprietary

Manage external peripherals, often using custom code

1

#HITB2023AMS https://conference.hitb.org/ |

N

Firmware Testing

e [Dynamic Analysis
o Emulation, coverage-guided fuzzing, etc...
o Currently not generic, too unreliable

e Static Analysis

o Too many false positives
o Need to take into account the multi-binary aspect

KARONTE: Detecting Insecure Multi-binary Interactions in Embedded Firmware. [EEE Symposium on Security & Privacy (S&P), 2020

o € €y €y €y €4 €4 €4 gy €4 €4 €4 €, €, £, €
. ﬁo € \o (o \o ﬁ. €, \o \t \- s \s \. \s Sw
‘s o € €y € g €, €4 (4 €45 F, €, ¢, ¢, ¢, €,

\._. \-3 \‘ \.' \.. \‘Q \..\. \.G \-‘ \-1 \6 “ £, 6. ¢

-
L4 ‘ ¢
e,
- g, €, ¢
D _ " F 7
(7o) .
% ¢ v, ¢
?O
L
® 9 = &)
[B
= =
b S
/ L] m\e
- S >
g .
L = Y ¢ v, ¢
= = € «
- e ¥ ...o
\)
.0 a h f & 4
L .
H
o | = S)
F.

#HITB2023AMS https://conference hitb.org/ |

Black-box Fuzzing

e : fﬁl
o

AN\l - B

1
#HITB2023AMS https://conference.hitb.org/ |

é Black-box Fuzzing
7

. AAAA

Fuzzing Inputs] .
Generation J f
(o

char data[100];

read (socket, buff, 500);

strcpy (data, buff);

1
#HITB2023AMS https://conference.hitb.org/ |

é Black-box Fuzzing
7

. “A” % 50

Fuzzing Inputs] .
Generation J f
(o

char data[100];

read (socket, buff, 500);

strcpy (data, buff);

1
#HITB2023AMS https://conference.hitb.org/ |

é Black-hox Fuzzing
7

\\AII %* 300 m

Fuzzing Inputs] .
Generation J f
(o

char data[100];

read (socket, buff, 500);

strcpy (data, buff); aﬁ

1
#HITB2023AMS https://conference.hitb.org/ |

é Black-box Fuzzing
7

N\ Kk
Fuzzing Inputs] A 300

Generation J g fﬂ,

char data[100];

read (socket, buff, 500);
if (!valid http reg(buff))
return;

strcpy (data, buff);

1
#HITB2023AMS https://conference.hitb.org/ | ’

% Smarter Black-box Fuzzing

é POST /send HTTP/1.1

data=“A” * 300
|] “A” %300
Fuzzing In.puts . .
Generation J f
(o
Oy

char data[100];

read (socket, buff, 500);
if (!valid http reg(buff))
return; [

strcpy(data, buff); aﬁ

1
#HITB2023AMS https://conference.hitb.org/ |

% Smarter Black-box Fuzzing

7

Black-box techniques require knowledge of the valid data format

loTFuzzer uses companion apps to create fuzzing inputs
e Finds Ul elements that generate network traffic
e Fuzzes functions' arguments containing Ul data

public void getBrFromUI (String wval) {
/] ...
process brightness (val);

}

public void process brightness(String msg) {
byte[] ent = encode (msg) ;
send to device (cnt);

1
#HITB2023AMS https://conference.hitb.org/ |

N

17

Fuzzing loT Devices ©

7z
= I Mobile App's Code
Input Network
Sanitization] | Serialization
String json = "{\"op\": \"auth\", \"pass\":" + adminPwd "}";

String encoded = Base64.encode (json) ;

httpSend (DEVICE IP; encoded);

1
#HITB2023AMS https://conference.hitb.org/ |

% Fuzzing loT Devices ©
)

_-— o o o o O EE o o o o o o o Em o

—— ' "Mobile App's Code ‘I ﬂ
|
|
' | Input I | Network I l
Sanitization Serialization I A /
! (v

4
-— / A
Ul-level Network-level
Limited by app sanitization x Invalid inputs x

@

1
#HITB2023AMS https://conference.hitb.org/ |

% Fuzzing loT Devices ©
)

_-— o o o o O EE o o o o o o o Em o

= l,l\/lobile App's Code
|
' Input Network
l Sanitization | 4| Serialization
|
L0 - _
Our Approach

Valid inputs /
Not limited by app-side input sanitization /

@

1
#HITB2023AMS https://conference.hitb.org/ | ’

% Diane: Overview

7

Fuzzing triggers: functions between app-side validation & data-encoding

Static Analysis Dynamic Analysis Hybrid Analysis
Companion ----—-—-—--—----~ . L mmmmmmmmmmm P T S .
App [callgraph Vo callgraph Vo callgraph \
_m I | I : :
| | |
APK] ™ —> —>! :
1
\\ ____________ ’ll \\ /l \\ /l
Candidate Validated Encoding function
sendMessage sendMessage Fuzzing Trigger

@

1
#HITB2023AMS https://conference.hitb.org/ | ’

é Fuzzing Triggers
7

Bottom-up approach to identify fuzzing triggers

O send-message

O,

1
#HITB2023AMS https://conference.hitb.org/ | ’

é Fuzzing Triggers
7

Ul
Bottom-up approach to identify fuzzing triggers Q

e Perform a backward slice up to the Ul/input

O send-message

@

1
#HITB2023AMS https://conference.hitb.org/ | ’

é Fuzzing Triggers
7

Ul
Bottom-up approach to identify fuzzing triggers Q

e Perform a backward slice up to the Ul/input
e Identify traversed functions

send-message

Q._O._.O._.O

@

1
#HITB2023AMS https://conference.hitb.org/ | ’

% Fuzzing Triggers
7

Ul
Bottom-up approach to identify fuzzing triggers Q
e Perform a backward slice up to the Ul/input C)
e Identify traversed functions i
e Dynamically hook funcs and calculate entropy O

O

O send-message

@

1
#HITB2023AMS https://conference.hitb.org/ | ’

% Fuzzing Triggers
7

Ul
Bottom-up approach to identify fuzzing triggers Q
e Perform a backward slice up to the Ul/input O
e Identify traversed functions .
e Dynamically hook funcs and calculate entropy O data_transforrih
e Data-transforming funcs if increase entropy >=T 5

O send-message

@

1
#HITB2023AMS https://conference.hitb.org/ | ’

% Fuzzing Triggers

Z y
/ Bottom-up approach to identify fuzzing triggers Q
e Perform a backward slice up to the Ul/input O
e Identify traversed functions i
e Dynamically hook funcs and calculate entropy O fuzzing trigger
e Data-transforming funcs if increase entropy >=T . J 98
[

|ldentify data-transforming funcs not dominated by ' |
other data-transforming funcs (fuzzing triggers) Q data-transformiig
O send-message

@

1
#HITB2023AMS https://conference.hitb.org/ |

é Example

public void setDeviceName(Stringﬁyname) { // UI
String nameg= substring (onane)
setDeviceIizg?EETTHEme);

public byte[] encode (Strlng S)

bytel] enc,
return enc;
}
public byte[] setDevicelInternal (String name) {

byte[] e = encode (name)

return se Device (
}

public byte[] sendToDevice (byte]l /* o %))

27

1
#HITB2023AMS https://conference.hitb.org/ |

public void setDeviceName (String oname) { // UI
String name = substring (oname,) 8
setDevicelInternal (name) ;

é Example

public byte[] encode(String s) {
byte[] enc;

return enc;

public byte[] setDevicelInternal (String name) {
byte[] e = encode (name);
return sendToDevice (e);

}

public byte[] sendToDevice (bytel[] c) { /* .. */ }

Entropy <T

Entropy >T

Entropy <T

28

1
#HITB2023AMS https://conference.hitb.org/ |

Diane: Fuzzing

N

AAA Fuzzed requests e |

AAAAA >

AAAAAAAA... < I
Heartbeat

X!

1
#HITB2023AMS https://conference.hitb.org/ |

% Experimental Results

/ Tested on 11 loT devices; different brands and categories

7/11 companion apps contain input sanitization
e Onalargerscale, 663/1304 (~51%) companions apps have
sanitization

On the 11 companion app/devices
e Diane identified 54 fuzzing triggers
o b false positives
o bBfuzzing triggers == send_message functions

@

1

#HITB2023AMS https://conference.hitb.org/ |

Experimental Results

é

31

DIANE [l IoTFuzzer

Device No. Generated No. Vuln. Time [hours] No. Fuzzed No. Time
ID Alerts Bugs Zero-day Type (No. Generated Inputs) Functions Bugs |[hours]
1 1 1 v Unknown < 0.5 (60,750) ol 0 N/A
2 3 7 v Buff overflow <0.5(322) 2 0.98
3 1 1 Unknown <1.2(7,344) 1 1 4

4 1 0 N/A N/A ol 0 N/A
5) 1 0 N/A N/A ol 0 N/A
6 4 1 Unknown <10 (34,680) 1 1 <10
7 3 0 N/A N/A N/A N/A N/A
8 3 0 N/A N/A N/A N/A N/A
9 0 0 N/A N/A 3 0 N/A
10 1 0 N/A N/A N/A N/A N/A
11 0 el v Unknown 2.2 (3,960) N/A N/A N/A

* All bugs were responsibly disclosed following the community guidelines

#HITB2023AMS https://conference hitb.org/ |

Use case: Popular Smart Lock

NXX_H-

https://docs.google.com/file/d/1ne7aourZ492s6IGgjDm4-PMsjFNHQk44/preview

1
#HITB2023AMS https://conference.hitb.org/ |

Research Outcomes
7

DIANE: Identifying Fuzzing Triggers in Apps to Generate Under-constrained Inputs for loT Devices
N. Redini, A. Continella, D. Das, G. De Pasquale, N. Spahn, A. Machiry, A. Bianchi, C. Kruegel, G. Vigna
In Procs. of the IEEE Symposium on Security & Privacy (S&P), 2021

DIANE: Identifying Fuzzing Triggers in Apps to
Generate Under-constrained Inputs for IoT Devices

Nilo Redini*, Andrea Continellaf, Dipanjan Das*, Giulio De Pasquale*, Noah Spahn*, Aravind Machiry?f,
Antonio Bianchit, Christopher Kruegel*, and Giovanni Vigna*
*UC Santa Barbara TUniversity of Twente FPurdue University
{nredini, dipanjan, peperunas, ncs, chris, vigna } @cs.ucsb.edu
a.continella@utwente.nl, {amachiry, antoniob } @purdue.edu

33

Abstract—Internet of Things (IoT) devices have rooted themselves
in the everyday life of billions of people. Thus, researchers have
applied automated bug finding techniques to improve their overall
security. However, due to the difficulties in extracting and emulating
custom firmware, black-box fuzzing is often the only viable analysis
option. Unfortunately, this solution mostly produces invalid inputs,
which are quickly discarded by the targeted IoT device and do not
penetrate its code. Another proposed approach is to leverage the
combpanion aop (i.e.. the mobile app tvoically used to control an IoT

however, present several limitations. First, obtaining the firmware
running on an IoT device is difficult: Extracting the firmware from
a device typically requires ad hoc solutions, and vendors hardly
make their software publicly available [70]. Second, unpacking
and analyzing a firmware sample is a challenging task: Firmware
samples may be available in a variety of formats, and may run on
several different architectures, often undocumented. Furthermore,

S s Ik P S T SE Tt M LR Tt TE I TN T T T S

1
#HITB2023AMS https://conference.hitb.org/ | ’

é Google Titan M Chip
7

External Coprocessor: Trusted Execution Environment (TEE)

Non—-Secure World Secure World
Untrusted Untrusted Untrusted Trusted Trusted Trusted
App App App App App App

Rich 05 ot - Trusted 05
v YA

\/ ARV
} Htidiiags Protected hardware
l resources

Tech

1
#HITB2023AMS https://conference.hitb.org/ | ’

Fuzzing Titan M

Table 1: Results of fuzzing the Titan M firmware, version 0.0.3/brick_v0.0.8232-b1e3ea340

N

Task Command Bug Detection Return code | Avg. # of messages
Identity ICPushReaderCert Buffer overflow Chip reboots 2 74
Identity ICsetAuthToken Buffer overflow Stack canary 2 475
Identity =~ WICaddAccessControlProfile Null-pointer dereference Chip halts 4 57
Identity WICbeginAddEntry Null-pointer dereference Chip halts 4 99
Identity WICfinishAddingEntries Null-pointer dereference Chip halts 4 82
Identity ICstartRetrieveEntryValue Null-pointer dereference Chip halts 4 105

Keymaster FinishAttestKey N/A Chip reboots 2 257
Keymaster IdentityFinishAttestKey N/A Chip reboots 2 192

Table 2: Results of fuzzing the Titan M firmware, version 0.0.3/brick_v0.0.8292-b3875afe2

Task Command Bug Detection Return code | Avg. # of messages
Identity =~ WICfinishAddingEntries Null-pointer dereference Chip halts 4 72
Identity ICstartRetrieveEntryValue Null-pointer dereference Chip halts + 126

* All bugs were responsibly disclosed following the community guidelines

1
#HITB2023AMS https://conference.hitb.org/ |

Research Outcomes
7

Reversing and Fuzzing the Google Titan M Chip
Damiano Melotti, Maxime Rossi-Bellom, Andrea Continella
In Procs. of the Reversing and Offensive-oriented Trends Symposium (ROOTS), 2021

Reversing and Fuzzing the Google Titan M Chip

Andrea Continella
University of Twente
a.continella@utwente.nl

Damiano Melotti Maxime Rossi-Bellom
University of Twente & Quarkslab Quarkslab
dmelotti@quarkslab.com mrossibellom@quarkslab.com

37

ABSTRACT

Google recently introduced a secure chip called Titan M in its Pixel
smartphones, enabling the implementation of a Trusted Execu-
tion Environment (TEE) in Tamper Resistant Hardware. TEEs have
been proven effective in reducing the attack surface exposed by
smartphones, by protecting specific security-sensitive operations.
However, studies have shown that TEE code and execution can also
be targeted and exploited by attackers, therefore, studying their
security lays the basis of the trust we have in their features.

In this paper, we provide the first security analysis of Titan M.
First, we reverse engineer the firmware and we review the open
source code in the Android OS that is responsible for the communi-
cation with the chip. By exploiting a known vulnerability, we then
dynamically examine the memory layout and the internals of the
chip. Finally, leveraging the acquired knowledge, we design and

Deploying security measures at the hardware level is not new,
as described in Section 2. However, it is not so common for mobile
devices to have a dedicated chip, physically separated from the
main CPU, implementing a Trusted Execution Environment (TEE)
and ensuring tamper-resistant properties.

When the chip was announced, Google reported that its firmware
would be open source [33]. To date, no source code has been pub-
lished and not much information is available about the internals of
this chip. Despite that, to motivate researchers into investigating
this module, Google introduced a special reward of one million dol-
lars for whoever can find a full-chain remote code execution exploit
with persistence [27]. Indeed, Titan M represents the so-called Root
of Trust of a device, the baseline all security features rely upon: in
case of compromise, the target falls completely under the attacker’s

control.
Yo L GO MRS SV Y SRR) X by PR SASXTOE PEAY Vhay s SFEBEREE IR o s SR AN o L g f el b 2

1
#HITB2023AMS https://conference.hitb.org/ |

% loT Device Firmware Update (DFU)
/

@ Get latest firmware
4 ______________
7\ (— =0
// I
/ —
el L~ @
‘ - \‘\
\\ 4 ’¢’ -~
N Il

. ® Binary transfer /
-
(%

WK @ Checkfirmware version A

”
-

N
N

What could
possibly go wrong?

1
#HITB2023AMS https://conference.hitb.org/ |

2 Threats

Apps, networks, & cloud servers might be compromised

CJEC]
| (mm| [m
||
| [mm]
CJEmC3
Device Firmware Firmware
Bricking Downgrade Modification

@

1

#HITB2023AMS https://conference.hitb.org/ |

Methodology

y
é

@

23 devices w/ companion apps
from 16 best-seller categories

l

Large-scale
Analysis

|

BEST m .
SELLER 1),
SDK Fingerprints
Popular Devices R?VQFS?
| ’ Engineering 6 vulnerable SDKs
11 ' Lol

Popular loT SDKs

Dynamic Testing

1
#HITB2023AMS https://conference.hitb.org/ |

N

@

Large-scale Analysis

Dataset: 37,783 loT companion apps (Android)

1,356 apps on the Google PlayStore use at least one of the 6
vulnerable SDKs
- 1,347 apps vulnerable to ModAttack — also
Brick/DownAttack
- 1 app only vulnerable to BrickAttack
- 8 apps only vulnerable to DownAttack

24 apps control 61 potentially vulnerable devices among the top
50 best-sellers

1
#HITB2023AMS https://conference.hitb.org/ |

Research Outcomes
7

AoT - Attack on Things: A security analysis of loT firmware updates

Muhammad lbrahim, Andrea Continella, Antonio Bianchi

In Procs. of the IEEE European Symposium on Security and Privacy (EuroS&P), 2023

Muhammad Ibrahim
Purdue University
West Lafayette, USA
ibrahi23@ purdue.edu

t firmware

AoT - Attack on Things:

Andrea Continella
University of Twente
Enschede, Netherlands
acontinella@iseclab.org

mecha-

A security analysis of IoT firmware updates

Antonio Bianchi

Purdue University
West Lafayette, USA
antoniob @ purdue.edu

4y

Abstract—IoT devices imple:
nisms to fix security issues and deploy new features. These
mechanisms are often triggered and mediated by mobile
companion apps r ing on the users’ smartphones. While
it is crucial to update devices, these mechanisms may cause
critical security flaws if they are not implemented correctly.

Aat.
P

Given their relevance, in this paper, we perform a system-
atic security analysis of the firmware update mechanisms
adopted by IoT devices via their companion apps. First, we
define a threat model for IoT firmware updates, and we cat-
egorize the different potential security issues affecting them.
Then, we analyze 23 popular IoT devices (and corresponding

IoT devices can miss critical security patches or can be
compromised by executing malicious code.

Previous works [10], [22], [33], [46], [68] identified
specific vulnerabilities in the firmware update mechanisms
of some loT devices. However, the state-of-the-art lacks
a comprehensive and systematic picture of DFU issues
in the IoT ecosystem. In fact, existing works only focus
on a few selected products from specific vendors and do
not provide a scalable categorization approach. Besides,
the previously investigated attacks require access to the
hardware of the loT devices. sienificantly limitine the

1
#HITB2023AMS https://conference.hitb.org/ |

% Conclusions
)

Embedded devices require re-thinking automated security analyses

Understanding and modeling the interactions of their firmware is crucial

More effective approaches and tools to identify vulnerabilities

Now, how do we automatically prevent and patch vulnerabilities?

@

1
#HITB2023AMS https://conference.hitb.org/ |

% Ongoing/Future Research

7

Injecting patches into monolithic firmware by static re-writing

ldentifying and isolating components in monolithic images

Building a “living” loT lab for data collection & experimentation

Lightweight runtime detection of anomalies

@

AANNNNNN

47

#H1TB2023AMS

Thank you!
Questions?

C

https://conference.hitb.org/

D

Andrea Continella

<acontinella@iseclab.org>
https://conand.me

Y @ conand

mailto:acontinella@iseclab.org
https://conand.me

