
Privilege Escalation
using DOP in x86-64 macOS

Yoochan Lee, Sangjun Song, Junoh Lee, and Jeongsu Choi

Whoami?

Team GYG
We focus on CTF and Bug Hunting.

Yoochan Lee
- Ph.D student

- Linux, macOS

Sangjun Song
- Security

Researcher

- Web3

Junoh Lee
- Security

Researcher

- Windows

Jeongsu Choi
- Security

Researcher

- Web

The history

ret2stack

In user application

exploit technique

DEP

mitigation

ret2heap

In kernel

ret2usr ret2dir DOPkCFISMAP/
SMEP

ROP KASLR Leak

ret2libc ASLR ROP PIE Leak

The history In kernel

ret2usr SMAP/
SMEP

- ret2usr
Change RIP register to user space address

kernel

user

kernel

user

high

low

segfault

ret2usr ret2dirSMAP/
SMEP

The history In kernel

- SMAP/SMEP
Prevent user memory access when kernel runs

kernel

user

segfault

ret2usr ret2dirSMAP/
SMEP

ROP

The history In kernel

- ret2dir
Using direct mapping area for executing

shellcode

kernel

user

Direct map

Direct map

same

ret2usr ret2dirSMAP/
SMEP

ROP KASLR

The history In kernel

- ROP
Return-Oriented Programming

Manipulating control-flow to execute code

snippets (ROP gadget) sequentially.

ret2usr ret2dirSMAP/
SMEP

ROP KASLR Leak

The history In kernel

- Kernel ASLR

For preventing the execution of ROP

gadget, the kernel randomizes the

kernel memory address at boot time

kernel

high

low
base base α

Before

kernel

After

ret2dir kCFISMAP/
SMEP

ROP KASLR Leak

The history In kernel

- Information Leakage

For bypassing KASLR, the attacker

needs to leak a kernel address for

calculating changed address

base α

kernel

α = Leaked pointer - offset - base

ret2dir DOPkCFIROP KASLR Leak

The history In kernel

- Kernel CFI

Restrict when control-flow change

gadget

negative

positive

Control-Flow

DOPkCFIROP KASLR Leak

The history In kernel

- DOP

Data-Oriented Programming

obj

ptr

cred obj

ptr

cred

Data-Oriented Programming

• Manipulate the data-flow to read/write a target data.

• That is, it has advantage when corrupting specific data.

obj

ptr

cred obj

ptr

cred

Strength of DOP

Specialized in kernel exploit

• DOP is effective not in User App but in Kernel

The goal of user
application exploit

ptr

cred
uid = 0

The goal of
kernel exploit

Strength of DOP

Patch-agnostic exploits

• ROP gadget is highly affected by the patch.

• Because the patch makes the offset of the ROP gadget changes.

Text

ROP Gadget

Func1

Func2

Func3

…

0xFF…1000

Text

ROP Gadget

Func1

Func2

…

0xFF…3000
New Func

Before patch After patch

Strength of DOP

Patch-agnostic exploits

• DOP is less affected by the patch.

• Unless the object used in the exploit is changed, the exploit hasn’t changed.

Heap

DOP Obj

Target Obj

Obj1

…

Before patch After patch

Heap

DOP Obj

Target Obj

Obj1

…
Obj2 Obj2

Requirements of DOP

• Privilege Escalation using DOP needs three exploit primitives.
• Information Leakage

• Arbitrary Address Read

• Arbitrary Address Write

Requirements of DOP

• Privilege Escalation using DOP needs three exploit primitives.
• Information Leakage

• Arbitrary Address Read

• Arbitrary Address Write

Heap
PTR

Heap
PTR

kernel

user
kernel-user

transfer function

Requirements of DOP

• Privilege Escalation using DOP needs three exploit primitives.
• Information Leakage

• Arbitrary Address Read

• Arbitrary Address Write

Cred
PTR

kernel

user
kernel-user

transfer function

task_struct
void *cred;

Read and Transfer
to user

PTR

Requirements of DOP

• Privilege Escalation using DOP needs three exploit primitives.
• Information Leakage

• Arbitrary Address Read

• Arbitrary Address Write

cred
PTR

kernel

Cred
int uid; Write 0 to uid

CVE-2021-31077

• One Heap Overflow

• Vulnerability Timeline

• Found this vulnerability in late 2018

• Exploit this vulnerability in 2020. 05

• Report to the vendor in 2020. 05

• Bug bounty reward in 2022. 06

• Upload at patch note in 2023. 03

Attack Surface

• IO80211, Broadcom

x86 macOS

• IO80211Family.kext
• AirPort.BrcmNIC.kext

ARM macOS

• IO80211Family.kext
• AppleBCMWLANCore.kext

IO80211Family

Broadcom

User App
User

Kernel

Device

Attack Surface

• IO80211, Broadcom

• Our attack surface is disclosed a very few times.

• ZDI blog in 2018
Based on my report

• BlackHat 2020 by Wang

Attack Surface

• IO80211, Broadcom

• We found a number of bugs and vulnerabilities.

• CVE-2018-4084 : Information Leakage
• CVE-2018-4338 : Information Leakage
• CVE-2020-3839 : Information Leakage
• CVE-2021-31077 : Local Privilege Escalation

Reward about $40,000

Attack Surface

• How to know this module can be called by user.

syscall

1) Tracking root function 2) Finding the specific function

funcA()
{

funcB();
funcC();
funcD();

}

Attack Surface

• How to know this module can be called by user.

syscall

1) Tracking root function 2) Finding the specific function

funcA()
{

funcB();
copyin();
funcD();

}

Attack Surface

• How to know this module can be called by user.

2) Finding the specific function

funcA()
{

funcB();
copyin();
funcD();

}

Attack Surface

• How to connect and trigger

• Answer is in Google

CVE-2021-31077

• The kernel extension has two functions: setIE, getIE.

• Two functions can be called by ioctl().

• Two function treats storing and getting Information Element.

• The bug is triggered when executing getIE.

• However, to understand the bug, we have to understand the

mechanism of setIE and getIE.

CVE-2021-31077

• setIE stores Information Element in vndr_ie.

int AirPort_BrcmNIC::setIE(a1, a2, apple80211_ie_data *input)
{

uint8_t *ptr = osl_mallocz(*(a1 + 2528), 10000);
...
strncpy_chk(ptr, "add", 4, 4);
ptr[12] = input->data->id;
memcpy(ptr+14, &input->data->len, input->ie_len-1);

/* Point 0. this value is the key point of triggering overflow */
ptr[13] = BYTE(input->ie_len-1);

// store the buffer to "vndr_ie" variable
err = wlIovarOp(a1, "vndr_ie", 0, 0, ptr, v18 + 14);

}

CVE-2021-31077

• getIE in IO80211Familly allocates the heap buffer.
int getIE(a1, a2, a3, a4, input)
{

struct apple80211_ie_data data;
vndr_ie *ptr;
copyIn(*(input + 32), &data, 0x20uLL);
...
/* Point 1. allocate with size that user input */
ptr = IOMalloc(data.ie_len);
data.ie_data = ptr;
...
// this function calls AirPort_BrcmNIC::getIE() internally.
apple80211RequestIoctl(this, 0xC03069C9, 85, a2, &data);
...
err = copyOut(&data, *(input + 32), 32);
if(!err)

copyOut(data.ie_data, user_ptr, data.ie_len);
}

CVE-2021-31077

• A heap overflow bug is triggered in AirPort_BrcmNIC::getIE.
• input == allocated buffer & stored == stored buffer in setIE

int AirPort_BrcmNIC::getIE(a1, a2, apple80211_ie_data *input)
{

...
void *ptr = osl_mallocz(*(a1 + 2528), 10000LL);
// store the buffer to "vndr_ie" variable
err = wlIovarOp(a1, "vndr_ie", 0LL, 0LL, ptr, 10000LL);
vndr_ie *stored = ptr+8;
...
/* Point 2. overflow will be occured when the size of input-
>data is smaller than stored->len */
memcpy(input->data + input->some_other_len, \

&stored->data[0] + input->some_other_len, \
stored->len - input->someotherlen + 2);

input->ie_len = stored->len + 1;
}

CVE-2021-31077

1) Information Element is stored by setIE().

vndr_ieLen:
100

2) The buffer is allocated with user controllable size by getIE().

Size: 100

vndr_ie

Size: 80

Over
flowvndr_ie

Size: 80

3) The memory copy is triggered with a stored length size.
That is, if the allocated buffer’s size is smaller than stored length,

the heap buffer overflow is triggered.

CVE-2021-31077

Over
flowvndr_ie

Controllable Controllable

In summary, this vulnerability can control the size of buffer and the size of overflow.

Exploit

• After overflow, kernel panic occurs because of hardened copy.
• This is because data.ie_len is overwritten to be larger than allocated.

int getIE(a1, a2, a3, a4, input)
{

// this function calls AirPort_BrcmNIC::getIE() internally.

apple80211RequestIoctl(this, 0xC03069C9, 85, a2, &data);
...
err = copyOut(&data, *(input + 32), 32);
if(!err)

copyOut(data.ie_data, user_ptr, data.ie_len);
}

vndr_ie

Over
flowvndr_ie

Size: 80

Len:
80

Len:
100

Size: 80

e.g., 100

Hardened Copy

• It is a mitigation that prevents overread.
• If the copied size is bigger than the size of the object, it triggers

kernel panic.

obj1

Size: 128

obj2

Size: 128

obj3

Size: 128

obj4

Size: 128

obj5

Size: 128

Kalloc.128

obj1

Size: 128

obj2

Size: 128

obj3

Size: 128

obj4

Size: 128

obj5

Size: 128

Kalloc.128 overread

copyout(&obj3, user, 150);

Exploit: Bypass Hardened Copy

• We thought the kernel panic by hardened copy must be triggered if
the attacker tries to cause heap overflow.

int getIE(a1, a2, a3, a4, input)
{

// this function calls AirPort_BrcmNIC::getIE() internally.

apple80211RequestIoctl(this, 0xC03069C9, 85, a2, &data);
...
err = copyOut(&data, *(input + 32), 32);
if(!err)

copyOut(data.ie_data, user_ptr, data.ie_len);
}

Exploit: Bypass Hardened Copy

• Here, we found a simple trick that prevents the second copyOut
function.
• The second copyOut is not executed if the first copyOut is failed.

int getIE(a1, a2, a3, a4, input)
{

// this function calls AirPort_BrcmNIC::getIE() internally.

apple80211RequestIoctl(this, 0xC03069C9, 85, a2, &data);
...
err = copyOut(&data, *(input + 32), 32);
if(!err)

copyOut(data.ie_data, user_ptr, data.ie_len);
}

Exploit: Bypass Hardened Copy

• copyOut function returns failed when it has a problem to copy the

data to user space memory.
• If the user space memory address is not assigned.

• If the user space memory is read-only.

• Etc.

Exploit: Bypass Hardened Copy

• If the user space memory address is not assigned.

int getIE(a1, a2, a3, a4, input)
{

struct apple80211_ie_data data;
vndr_ie *ptr;
copyIn(*(input + 32), &data, 0x20uLL);
...

...
err = copyOut(&data, *(input + 32), 32);
if(!err)

copyOut(data.ie_data, user_ptr, data.ie_len);
}

Same user space memory

Exploit: Bypass Hardened Copy

• If the user space memory is read-only.

kernel
user

Input+32

Read-only Permission

&data

copyIn Success

Input+32

Read-only Permission

&data

copyOut Failed

Exploit: Bypass Hardened Copy

• Since the trick makes first copyOut failed, the second copyOut is not
executed.

int getIE(a1, a2, a3, a4, input)
{

// this function calls AirPort_BrcmNIC::getIE() internally.

apple80211RequestIoctl(this, 0xC03069C9, 85, a2, &data);
...
err = copyOut(&data, *(input + 32), 32); // return fail
if(!err) // goto else

copyOut(data.ie_data, user_ptr, data.ie_len); // Panic!
}

Exploit

Now, we can corrupt the target object which is placed right after the vulnerable object.

Vuln Obj Target ObjObj
Corr
upt

Exploit

Target object : According to the target object, the vulnerability can be turned into
various exploit primitives.

Target Obj

DOP needs 3 primitives: Information Leakage, Arbitrary Address Read, Arbitrary Address Write

Exploit

Target object : According to the target object, the vulnerability can be turned into
various exploit primitives.

Exploit

Target object : According to the target object, the vulnerability can be turned into
various exploit primitives.

Exploit

We only use ip6po_pktinfo for Information Leakage, AAR, AAW

Exploit

Zone

kalloc.192

kalloc.32

ip6_pktopts

ip6_pktinfo

Ip6po
_pktinfo

Exploit

Information Leakage

kalloc.192

kalloc.32

ip6_pktopts

ip6_pktinfo

Ip6po
_pktinfo

mach_task_
self()

mach_task_
self()

mach_task_
self()

ip6po_pckinfo : 0xFFFF….0032

0xFFFF….0000
ip6po_pckinfo : 0xFFFF….0000

Exploit

Recursive Arbitrary Address Read

Exploit

Recursive Arbitrary Address Read

Exploit

Recursive Arbitrary Address Read

Exploit

Arbitrary Address Write

Exploit
Proof-Of-Concept

Email: yoochan10@snu.ac.kr
Twitter: @_yoochanlee

mailto:yoochan10@snu.ac.kr

