
SRLabs Template v12

Corporate Design

2016

Bugs in Blocks
HITB Phuket, Aug 24, 2023

Karsten Nohl <nohl@srlabs.de>



Das Logo Horizontal

— Pos / Neg

3

Nice to meet you :)

2

Louis Merlin

- Security researcher, 
focusing on blockchain 
security and threat 
analysis

- Develops fuzz testing 
tools

Gabriel Arnautu

- Security researcher, 
conducting blockchain 
security reviews

- Focuses on tool 
development for audit 
automation

The SRLabs heroes behind this research

Karsten Nohl

- Studied cryptography, 
not crypto! =)

- Founder of SRLabs

- Research track record 
in mobile network 
security

- Former CISO at large 
telcos

- Lives in Bangkok



Das Logo Horizontal

— Pos / Neg

3

Blockchain technology, love it or hate it, is continuously evolving;
Researchers are hardly keeping up

3

Research question – How do we proactively find bugs in large blockchain ecosystems?

This talk discusses five types of common blockchain bugs, and how to find them.



Das Logo Horizontal

— Pos / Neg

3

Bugs are explosive in crypto: Single-line integer overflow caused cryptocurrency to implode

4

...

    totalSupply = initSupply.mul(yamsScalingFactor);

    emit Rebase(epoch, prevYamsScalingFactor, yamsScalingFactor);

    return totalSupply;

}

...

The rebase function aims to 
maintain token price stability. 
However, due to an integer 
overflow it incorrectly 
calculates the totalSupply, 
resulting in an excessive 
reserve of minted tokens

Vulnerable 
code 
snippet in 
YAM 
Finance 
rebase logic

§ YAM launched in 2020 and quickly attracted >$500 million in assets
§ The project founders warned about its immaturity and the lack of security auditing
§ A bug caused the coin to lose control of its on-chain governance feature

§ Efforts to regain control of the YAM 
treasury failed

§ YAM’s total market capitalization 
dropped from $65 million to zero in a 
few hours

§ This event shows how a single 
vulnerability in a single line of code 
can compromise a whole project and 
the consumer funds behind it

Background

Impact



Das Logo Horizontal

— Pos / Neg

3

Criminals cash-out blockchain programming bugs in two ways

5

Financial 
criminals 
extract 
value from 
blockchains 
in two ways

Move value 
on chain

Find bug in 
blockchain 
project

Force transactions to move tokens to 
hacker’s account

Try to sell 
stolen 
tokens

Diminish 
overall value 
of chain

Short-sell 
tokens
(That is: Bet 
that the 
price will go 
down)

Use bug to 
degrade 
availability 
or 
performance

Trust in 
project 
dops;
Value of 
blockchain 
drops

Cash out 
short-sell
= get paid 
because the 
price 
dropped

Out of scope for this 
presentation: Other 
methods criminals use to 
defraud blockchains

- Abuse of a chain’s business logic (‘economic attacks’)
- Hacking the underlying IT infrastructure or web/mobile apps
- Social engineering and other attacks on blockchain endusers
- Financial scams



Das Logo Horizontal

— Pos / Neg

3

Agenda

6

§ Intro to third-generation blockchains

§ Five types of blockchain hacking

§ Fuzzing blockchains effectively



Das Logo Horizontal

— Pos / Neg

3

Third-generation blockchains set out to solve scalability and interoperability

7

1st generation blockchains 2nd generation blockchains 3rd generation blockchains

Distributed Ledger (Bitcoin)
2008

Smart Contracts (Ethereum)
2013

§ Technology to transact with one 
another (at a peer-to-peer level)

§ Users do not need to rely on 
centralized entities such as banks

§ The design only allows you to 
send, receive and trade assets

§ Introduces smart contracts, self-
executing agreements made 
between parties

§ Allows executing agreements 
without relying on an expensive 
intermediary to manage it

§ Behaves as digital ecosystem that 
other crypto projects operate on

§ Does not scale well, slowing down 
transactions

§ Solves 2nd gen issue of scalability
by creating more parallel 
transaction and more storage

§ Introduces interoperability, 
allowing blockchains to interact 
with one another

§ Adds more flexibility towards 
networking, node, and runtime 
configuration, empowering 
custom-purpose blockchains

Interoperability (e.g. Polkadot)
2017

Our focus today:



Das Logo Horizontal

— Pos / Neg

3

Substrate is a framework to program “third-gen” chains

8

Substrate is a 
programming 
framework to 
build 
blockchains …

Developers found they were recreating 
much of the same functionality but with 
different limitations around scale, 
governance, forks, interoperability, and 
upgrades

Substrate in a nutshell provides
§ Tooling for development, deployment, 

debugging
§ Blockchains to upgrade forkless
§ Hot-swap components (pallets) such as the 

network stack, consensus, finality engine

Engineering challenge Their solution

… and has 
been adopted 
for over a 
hundred 
blockchain 
projects

Substrate is actively used 
by 153 teams building 
blockchain projects, 
making it a relevant 
security research target



Das Logo Horizontal

— Pos / Neg

3

Runtime

Substrate is the foundation of different blockchain projects;
Scalable methods and toolchain needed for vulnerability testing

9

Aura BABE GRANDPA Elections

Utility Atomic Swap Sudo Multisig

Identity Assets Contracts EVM

Collective Treasury Elections
Phragmen Democracy

Randomness Timestamp Staking more ..

Aura GRANDPA Sudo Assets

Collective Treasury Elections 
Phragmen Timestamp

FRAME palletsArchitecture of Substrate client

P2P
networking

RPC

Native
Runtime Storage

Consensus

Telemetry

Wasm
Runtime

(our focus today)



Das Logo Horizontal

— Pos / Neg

3

Agenda

10

§ Intro to third-generation blockchains

§ Five types of blockchain hacking

§ Fuzzing blockchains effectively



Das Logo Horizontal

— Pos / Neg

3

Five types of hacking attacks are commonly possible against third-gen blockchains

11

Example hacking
goal

Wrongly-priced 
transactions

Spam a wrongly-priced 
transaction can cause a DoS

Abuse an operation to edit values 
to your advantage

Incorrect usage of 
standard patterns 

Abuse a misconfiguration to gain a 
financial advantage or cause DoS

Storage bloating Reduce chain useability by filling 
its storage

Reachable panics Cause every available node to 
panic and cause a DoS

Exhaust 
resources

Manipulate 
program flow

DoS nodes

Abuse business 
logic

Slow down chain

A

C

D

E

Bug type Bug impact Availa-
bility

Integrity

These hacks may be 
leveraged against q 
wide range of  
blockchain projects, 
as they do not 
require any secret 
information from 
the victim; and most 
configurations and 
program source 
code is open

Attack scope

Unsafe arithmetic

Logic bugs
B



Das Logo Horizontal

— Pos / Neg

3

Underpriced function calls enable resource exhaustion

12

A

Example:
Hacker short-sells 
tokens and drives 
down chain value

Wrongly-priced 
transactions

Spam a wrongly-priced transaction 
can cause a DoS

Exhaust 
resources

Avail. Integrity

The cost (“weight”) of 
some blockchain 
function was estimated 
too low

Hacker drives chain 
into loop by calling 
underpriced function 
repeatedly

The blockchain is 
frozen, loses 
credibitility and value

1 2 3

Hacking goal Bug type Bug impact



Das Logo Horizontal

— Pos / Neg

3

Miscalculation of block execution time can cause network DoS

13

A

Weight* is a 
representation of 
block execution 

time.

Transactions

Transfer X DOTs From Alice to Bob

Vote Yay on Proposal Y

Nominate validator M with Z Dots

. . . 

A transaction is a piece of 
information that comes 
from outside the chain and 
is included in a block.

Block 
11

Block 
12

Block 
13

Block 
14

Block 
15

Background info.
Resources available to 
blockchains are limited. 
These resources include 
memory usage, storage I/O, 
computation, 
transaction/block size and 
state database size.

Attack.
The hacker sends a malicious 
transaction to cause block 
execution taking too long

The hacker abuses a vulnerability in the weight* 
calculation, causing the nodes to miss their 
chance to generate new blocks, resulting in 
network DoS

Hacker

*One unit of weight is one picosecond of 
execution time, that is 10**12 weight = 1 
second, or 1,000 weight = 1 nanosecond, on 
fixed reference hardware

Scenario 1: Exhaust resources

1



Das Logo Horizontal

— Pos / Neg

3

Hackers can craft and gossip a nested transaction causing nodes to miss their slots and 
fail at block production, and potentially halting the blockchain

14

A

Hacker nests 
transaction 
sudo_as(sudo_as(sudo_
as(…)))) causing 
exponential complexity 
of the get dispatch info 
weight calculation 
function

……Get dispatch 
info

Get dispatch 
info

Get dispatch 
info

Get dispatch 
info

Get dispatch 
info

Example: nesting sudo_as 41 times results in a call 
tree with 2^40 = 1’099’511’627’776 leaves

#[weight = (
    call.get_dispatch_info().weight
    .saturating_add(10_000)
    // AccountData for inner call origin accountdata.
    .saturating_add(T::DbWeight::get().reads_writes(1, 1)),
    call.get_dispatch_info().class
)] 
fn sudo_as(origin,
 who: <T::Lookup as StaticLookup>::Source,

Scenario 1: Vulnerable Code in sudo_as transaction

To receive the sudo_as transaction call dispatch class 
and weight, the getter function to receive the dispatch 
information that holds both weight and class is called 
twice

Hacker

2



Das Logo Horizontal

— Pos / Neg

3

An arithmetic overflow in the weight calculation allows hacker to exhaust chain resources 

15

B

Example:
Competitor 
sabotages 
credibility of the 
chain

Manipulate 
program flow

Avail. Integrity

The cost (“weight”) of 
some blockchain 
function is calculated 
based on the input’s 
length; an arithmetic 
overflow will trigger a 
“wrap around” 
behavior

Competitor calls 
function with large 
input parameter, 
causing a huge 
discrepancy between 
the calculated weight 
and the computational 
work required

The blockchain acts 
contrary to its intended 
programming, loses 
credibility and value

1 2 3

Hacking goal Bug type Bug impact

Abuse an operation to edit values 
to your advantage

Unsafe arithmetic

Logic bug



Das Logo Horizontal

— Pos / Neg

3

Integer overflows can lead to financial loss or denial of service

16

// verify that relayer is paying actual dispatch weight

let actual_dispatch_weight: Weight = messages

    .values()

    .map(|lane_messages| lane_messages

        .messages

        .iter()

        .map(T::MessageDispatch::dispatch_weight)

        .sum::<Weight>()

    )

   .sum();

if allowed_dispatch_weight < actual_dispatch_weight {

    return 

Err(Error::<T,I>::InvalidMessagesDispatchWeight.into());

}

Scenario 1: Vulnerable Code

1B

• Hacker transmits a receive_messages_proof transaction 
containing a large proof struct and a high value for 
messages_count

- Node that executes the block will timeout, missing their 
production slot

Attack sequence

1

2

The hacker sends a malicious transaction with a large proof in 
one of these queues, causing a denial of service because of the 
“wrap around” behavior when sum() is executed.

Hacker

Block 
13

Block 
14

TRANSMIT 
receive_messages_proof(…, 

proof=vec![message(2^32, REGULAR_PAYLOAD)], 
messages_count=2^32, …)

1

Node

NODE TIMEOUTS TRYING TO 
EXECUTE THE BLOCK

2
x



Das Logo Horizontal

— Pos / Neg

3

Bonus vulnerability: Arithmetic overflow prevention code leads to logic bug

17

let messages_in_the_proof = end.checked_sub(begin)

    .and_then(|diff| diff.checked_add(1))

    .unwrap_or(0);

if messages_in_the_proof != messages_count {

    return Err(MessageProofError::MessagesCountMismatch);

}

let mut messages = Vec::with_capacity(end);

Scenario 1: Vulnerable Code

B 2

Hacker

Block 
13

Block 
14

TRANSMIT 
receive_message_proof(begin=0, 

end=18446744073709551615, message_count=0)

1

Node

NODE CRASHES TRYING TO 
EXECUTE THE BLOCK

• Hacker transmits a receive_message_proof 
transaction containing an end value of u64::MAX 
and begin and message_count of 0, causing a 
vector to be allocated that has size u64::MAX

- Node that executes the block panics on trying to 
allocate the vector

Attack sequence

1

2

2x

To circumvent overflows, developers will use “safe 
mathematic operations”, such as checked_add or 
saturating_add. These add a new layer of complexity: the 
code must handle edge cases properly



Das Logo Horizontal

— Pos / Neg

3

Logic bugs can enable hackers to gain unfair advantages and rewards

18

B

Example:
Hacker exploits 
logic bug present 
in source code to 
spoof their 
identity

Manipulate 
program flow

Avail. Integrity

Hacker claims a 
legitimate identity on 
the blockchain and 
monitors the network 
to figure out when the 
registrar will hand out 
its sentence

Hacker requests a 
spoofed identity 
immediately between 
the time when the 
registrar submits their 
judgment and when it 
is accepted on-chain

The hacker now 
controls a validated 
spoofed identity 
because the code did 
not check which 
identity was being 
validated

1 2 3

Hacking goal Bug type Bug impact

Logic bug

Abuse the logic of the chain against 
itself, gaining some reward in the 
process

Unsafe arithmetic



Das Logo Horizontal

— Pos / Neg

3

Hackers can spoof their identity by re-setting it right before the judgement is given

19

By monitoring the network, a hacker can figure 
out when a registrar will provide judgement on 
their identity and rush to include a transaction 
modifying their requested identity, with a higher 
tip so it gets executed before the judgement.

B 3

Registrar

Block 
13

Block 
14

Block 
15

Block 
16

1

2

3

- Hacker requests for legitimate 
identity to be judged “hello, I 
am legit_identity and here is 
my proof”

- Registrar provides judgement 
on identity “hello User, your 
identity is correct”

- Hacker requests for spoofed 
identity “hello, I am 
spoofed_identity” with high 
tip, thereby running ahead of 
transaction (2)

Attack sequence

1

2

3

legit_identity

spoofed_identity

IDENTITY CORRECT Hacker



Das Logo Horizontal

— Pos / Neg

3

Unhandled return values can cause the nodes to panic, allowing a hacker to DoS the chain

20

C

Example:
Hacker launches 
DoS attack 
against chain for 
supply-chain 
attack

Reachable panics Cause every available node to 
panic and cause a DoSDoS nodes

Avail. Integrity

Non-explicit handling 
of a function’s result 
assumes that it cannot 
return a “None” value

Hacker causes all the 
nodes to panic by 
calling a transaction 
with a high value as 
parameter

The blockchain is 
frozen, functionality is 
halted for projects 
using the chain, and 
the ecosystem loses 
credibitility and value

1 2 3

Hacking goal Bug type Bug impact



Das Logo Horizontal

— Pos / Neg

3

Triggering Rust panic conditions can compromise chain availability

21

fn get_dot_to_token (dot_amount: u128) -> u128 {

dot_amount.checked_mul(T::DOTToTokenRate::get()).unwrap();

}

Rust chooses to panic when None is returned in order to 
avoid any unexpected behavior.
In such cases, the runtime assumes that it is better to 
stop the program instead of using an unexpected value.

Call::Bids(Call::create_bid {

BidDetails {

currency: CENTS,

dot_amount: 5734123568823053662,

quantity_of_data_in_bytes: 31768

}

})

C

Hacker

Scenario 1: Vulnerable code

create_bid INVOKES get_dot_to_token, PASSING 
dot_amount

Block 
13

Block 
14

TRANSMIT 
create_bid(CENTS, 5734123568823053662, 31768)

1

x

Node

Node CRASHES TRYING TO 
EXECUTE THE BLOCK

- Hacker transmits a create_bid transaction containing an 
unusually high dot_amount (close to u128::MAX)

- Node that executes the block crashes

Attack sequence

1

2

2



Das Logo Horizontal

— Pos / Neg

3

Wrong configuration in runtime allows hacker to fill up blockchain’s storage 

22

D

Example:
Hacktivist drives 
down credibility 
of chain

Incorrect usage of 
standard patterns 

Abuse a misconfiguration allows a 
hacker to gain a financial 
advantage or cause DoS

Abuse business 
logic

Avail. Integrity

Wrongly configured 
runtime parameter 
allows the creation of 
an account for a 
derisory amount of 
money 

Hacktivist creates a 
large number of 
accounts for a small 
amount of money, 
cluttering the storage 
of the chain

The blockchain’s 
storage size increases, 
causing longer 
transaction times; it 
loses credibitility and 
value

1 2 3

Hacking goal Bug type Bug impact



Das Logo Horizontal

— Pos / Neg

3

23

D A bad runtime configuration can open vulnerabilities in the blockchain

pub const UNITS: Balance = 1_000_000_000_000;

pub const CENTS: Balance = UNITS / 100;

parameter_types! {

    pub const ExistentialDeposit: Balance = 0;

    pub const MaxLocks: u32 = 50;

    pub const MaxReserves: u32 = 50;

}

Scenario 1: Vulnerable Code

Hacker

full account – balance(0)

full account – balance(0)

full account – balance(0)

batch[transfer(new_account, 1), …]

Setting an existential deposit of  1 
means setting an existential deposit 
of 0.000000000001 UNITS, which is 
not enough to prevent spamming 
the creating of new accounts.

polkadot

kusama

1 DOT

0.003 KSM

5 €

0.01 €

project ED in € 

If ExistentialDeposit is set to a small value, a hacker could create a lot of 
accounts which will fill up the storage of the blockchain, using only a small 
amount of money for transaction costs.

Attack

…Each account is represented by an Account
structure which keeps track of user’s 
balance and Substrate specific reference 
counters, but it can also be enhanced with 
project specific parameters. This data 
structure lives in the storage of the 
blockchain if the account has a balance of 
at least ExistentialDeposit.



Das Logo Horizontal

— Pos / Neg

3

Non existing storage deposits allows hacker to fill up blockchain’s storage 

24

E

Example:
Disgruntled 
insider drives 
down credibility 
of chain

Storage bloating Reduce chain useability by filling its 
storageSlow down chain

Avail. Integrity

Missing storage 
deposit for the 
creation of large 
database items allows 
spamming this process

Disgruntled insider 
creates many storage 
items for a small 
amount of money, 
cluttering chain storage

Chain storage 
increases, causing 
longer transaction 
times and harder 
operability; it loses 
credibitility and value

1 2 3

Hacking goal Bug type Bug impact



Das Logo Horizontal

— Pos / Neg

3

Insufficient storage deposits can allow a hacker to cheaply fill the blockchain storage

25

E

SPAM with REGISTER
calls

Hacker
Attack

pub storage RequiredStakeForStakeAndSlash: Balance = 1_000_000;

...

pub fn register(origin: OriginFor<T>, valid_till: T::BlockNumber) -> DispatchResult {

    let relayer = ensure_signed(origin)?;

    ...

    RegisteredRelayers::<T>::try_mutate(&relayer, |maybe_registration| -> DispatchResult {

        let mut registration = maybe_registration

            .unwrap_or_else(|| Registration { valid_till, stake: Zero::zero() });

    ...

Scenario 1: Vulnerable CodeStorage bloating refers
to the phenomenon of 
excessive accumulation 
of data within a 
blockchain network, 
leading to increased 
storage requirements 
and potential 
operational 
inefficiencies

Transactions

Register bridge relayer

Register bridge relayer

Register bridge relayer

. . . 

Block 
13

Block 
14

SPAM with REGISTER
callsSpamming millions of 

Bridges::register() calls 
could result in 1GB of 
storage filled for only 
~USD 25’000 (compared 
to tens of millions of $ 
in other blockchains).

Attack
continues



Das Logo Horizontal

— Pos / Neg

3

Agenda

26

§ Intro to third-generation blockchains

§ Five types of blockchain hacking

§ Fuzzing blockchains effectively



Das Logo Horizontal

— Pos / Neg

3

Three analysis techniques to find blockchain bugs

27

Wrongly-priced 
transactions 

Static analysis

Unsafe arithmetic

Incorrect usage of 
standard patterns 

Storage bloating

Reachable panics

Fuzzing Manual review

A

C

D

E

I II III

Working on it

B

§ Static analysis should be 
done as part of 
development process, 
using tools such as 
semgrep and dylint

§ Security testing then 
typically starts with fuzz 
testing, which is 
particularly strong in 
finding availability bugs

§ Before an economic 
launch, every project 
should also go through 
security auditing 
including manual review

Take aways



Das Logo Horizontal

— Pos / Neg

3

Seed pool Seed Input

aefd05
bdca3b 
cdea12

We created software to find bugs in all these categories, this is our fuzz engine

28

AFL++ and 
honggfuzz 
based
coverage 
guided fuzz 
engine

Powerful 
mutator

Substrate-
based target

Mutate binary 
input and 
transform into 
transactions (=API 
calls)Custom 

parser-based 
fuzzing: 
Transform 
binary stream 
of data into 
list of 
runtime calls 
and run 
against target 
program

Fuzzer applies 
random 
permutation to 
given binary string

Run extracted 
transactions/API 
calls against the 
target program on 
a predefined state

SELECTION MUTATE

aefd05 ******** bdca3b ******** cdea12 

Transfer 3 DOTs From Alice to Bob

Vote Yay on Proposal #5

Nominate validator M with 2 Dots

Target

DROP IF NO ADDITIONAL 
COVERAGE

ADD TO SEED 
POOL IF 

ADDITIONAL 
COVERAGE

RUN AGAINST
TARGET

SPLIT BY
DELIMITER

TRANSFORM INTO 
TRANSACTION USING ENCODER

1

2

3

-DEMO-



Das Logo Horizontal

— Pos / Neg

3

- Demo -

29



Das Logo Horizontal

— Pos / Neg

3

30



Das Logo Horizontal

— Pos / Neg

3

https://github.com/srlabs/substrate-runtime-fuzzer

31



Das Logo Horizontal

— Pos / Neg

3

https://github.com/srlabs/ziggy

32



Das Logo Horizontal

— Pos / Neg

3

We continuously find bugs on a variety of chains

33

Number of security issues found
in 45 security reviews since January 2022 Issue type

12

2

9

12

7

15

18

23Wrongly-priced transactions 

Unsafe arithmetic

Incorrect usage of standard 
patterns 

Storage bloating

Reachable panics

a

b

c

d

E

Reachable panic issues

Benchmarking issues

Arithmetic issues

Memory issues

Storage issues

Configuration issues

Cryptography issues

Improper authentication

Benchmarking issuesA

B

C

D

Semi-automated testing is most effective in detecting
insufficient benchmarking, unsafe arithmetic usage, reachable panics and configuration issues



Das Logo Horizontal

— Pos / Neg

3

Takeaways

34

Questions?

Karsten Nohl  <nohl@srlabs.de>
Louis Merlin  <louis@srlabs.de>
Gabriel Arnautu <gabriel@srlabs.de>

3

2

1

Open-source tools enable mostly-automated reviews

Most bugs fall into five categories, many are crashes

Blockchains contain fascinating hacking puzzles


