Bugs in Blocks
HITB Phuket, Aug 24, 2023

Karsten Nohl <nohl@srlabs.de>

Security
I) Research

Labs

Nice to meet you :)

[> Security Research Labs

The SRLabs heroes behind this research

Karsten Nohl

- Studied cryptography,
not crypto! =)

- Founder of SRLabs

- Research track record
in mobile network
security

- Former CISO at large
telcos

- Lives in Bangkok

Louis Merlin

- Security researcher,
focusing on blockchain
security and threat
analysis

- Develops fuzz testing
tools

Gabriel Arnautu

- Security researcher,
conducting blockchain
security reviews

- Focuses on tool
development for audit
automation

Blockchain technology, love it or hate it, is continuously evolving;
Researchers are hardly keeping up

5

- @)e New Jork Eimes

The Crypto World Is on Edge After a String of
Hacks

More than $2 billion in digital currency has been stolen in-hacks

this year, shaking faith in the experimental field of decentralized
finance, known as DeFi.

Research question — How do we proactively find bugs in large blockchain ecosystems?

This talk discusses five types of common blockchain bugs, and how to find them.

[> Security Research Labs

Bugs are explosive in crypto: Single-line integer overflow caused cryptocurrency to implode

= YAM launched in 2020 and quickly attracted >$500 million in assets
CEECGI G | = The project founders warned about its immaturity and the lack of security auditing
= A bug caused the coin to lose control of its on-chain governance feature

The rebase function aims to
maintain token price stability.
However, due to an integer
overflow it incorrectly
calculates the totalSupply,
resulting in an excessive
reserve of minted tokens

Vulnerable

code totalSupply = initSupply.mul(yamsScalingFactor);
snippet in emit Rebase(epoch, prevYamsScalingFactor, yamsScalingFactor);

YAM return totalSupply;
Finance }
rebase logic

= Efforts to regain control of the YAM
treasury failed Qgg;tgelmore - Follow v

= YAM’s total market capitalization
dropped from $65 million to zero in a
few hours

= This event shows how a single
vulnerability in a single line of code
can compromise a whole project and Read 295 replies
the consumer funds behind it

i'm sorry everyone. i've failed. thank you for the insane
support today. i'm sick with grief

10:01 AM - Aug 13, 2020 ®

® 12K @ Reply (2 Copylink

[> Security Research Labs

Criminals cash-out blockchain programming bugs in two ways

: Try to sell
Move value Force transactions to move tokens to
) — , — stolen
_ , on chain hacker’s account
Financial tokens
criminals : :
axtract Find bug in
blockchain N
value from roiect sh . x . Cash out
SeakeEle proj ort-se e bume ru§t in ash ou
: . tokens project short-sell
in two ways Eliifalids . degrade :
(That is: Bet . dops; = get paid
overall value —> — availability [— —
: that the Value of because the
of chain . . or : :
price will go blockchain price
performance
down) drops dropped

Out of scope for this
presentation: Other
methods criminals use to
defraud blockchains

Abuse of a chain’s business logic (‘economic attacks’)
Hacking the underlying IT infrastructure or web/mobile apps
Social engineering and other attacks on blockchain endusers
Financial scams

[> Security Research Labs

Agenda

} Intro to third-generation blockchains
= Five types of blockchain hacking

= Fuzzing blockchains effectively

[> Security Research Labs

Third-generation blockchains set out to solve scalability and interoperability

Our focus today:

3rd generation blockchains

> 1%t generation blockchains > > 2"d generation blockchains

» Technology to transact with one
another (at a peer-to-peer level)

= Users do not need to rely on

centralized entities such as banks

» The design only allows you to
send, receive and trade assets

v
Distributed Ledger (Bitcoin)
2008

[> Security Research Labs

= |ntroduces smart contracts, self-
executing agreements made
between parties

= Allows executing agreements
without relying on an expensive
intermediary to manage it

= Behaves as digital ecosystem that
other crypto projects operate on

= Does not scale well, slowing down
transactions

v
Smart Contracts (Ethereum)
2013

))

= Solves 2" gen issue of scalability
by creating more parallel
transaction and more storage

" Introduces interoperability,
allowing blockchains to interact
with one another

= Adds more flexibility towards
networking, node, and runtime
configuration, empowering
custom-purpose blockchains

v
Interoperability (e.g. Polkadot)
2017

Substrate is a framework to program “third-gen” chains

Engineering challenge Their solution

Substrate in a nutshell provides

Substrate is a Developers found they were recreating ~ Touline for develepmen, daplsyman:

programming much of the same functionality but with debuewin
framework to different limitations around scale, gging

= Blockchai forkl
build governance, forks, interoperability, and SETENTS 10 UPFECR Hoias:
: = Hot-swap components (pallets) such as the
blockchains ... upgrades

network stack, consensus, finality engine

substrate_ Technologyv Developersv Visionv Ecosystemv

... and has
been adopted
for over a
hundred
blockchain

projects

Projects

Substrate is actively used
by 153 teams building
blockchain projects,
making it a relevant
security research target

153 projects

[> Security Research Labs

Substrate is the foundation of different blockchain projects;
Scalable methods and toolchain needed for vulnerability testing

Architecture of Substrate client

+=>

P2p

networking

Native
Runtime

RPC

Wasm

Runtime
(our focus today)

Storage

!

Consensus

Telemetry

FRAME pallets

Aura

Utility

Identity

Collective

Randomness

Runtime

GRANDPA

Atomic Swap Sudo

Assets Contracts

Elections

Treasury S

Timestamp Staking

\

Elections

Multisig

EV

Democracy

more ..

Aura

Collective

GRANDPA Sudo

Elections
Phragmen

Treasury

Assets

Timestamp

[> Security Research Labs

!

9

Agenda

[> Security Research Labs

" |ntro to third-generation blockchains
} Five types of blockchain hacking

= Fuzzing blockchains effectively

10

Five types of hacking attacks are commonly possible against third-gen blockchains

Example hacking Bug type Bug impact Availa- Integrity Attack scope
goal bility
Exhaust Q Wrongly-priced Spam a wrongly-priced
resources transactions transaction can cause a DoS
i i These hacks may be
Manipulate nSEIE EMEATIETE Abuse an operation to edit values 4

leveraged against g
wide range of
blockchain projects,
as they do not

program flow to your advantage

Logic bugs

Cause every available node to

o :
oS nodes G Reachable panics panic and cause a DoS

require any secret
information from
the victim; and most
configurations and
program source

code is open

Abuse business Q [alelel di=Ta ML T-(=Re} | Abuse a misconfiguration to gain a
logic SEEIGNENN | financial advantage or cause DoS

Reduce chain useability by filling

Slow down chain G Storage bloating its storage

[> Security Research Labs 11

@ Underpriced function calls enable resource exhaustion

Hacking goal

Exhaust
resources

Bug type

Wrongly-priced

transactions

Bug impact

Avail. Integrity

Spam a wrongly-priced transaction
can cause a DoS

Example:
Hacker short-sells

tokens and drives
down chain value

[> Security Research Labs

The cost (“weight”) of

some blockchain

function was estimated

too low

Hacker drives chain
into loop by calling
underpriced function

repeatedly

The blockchain is
frozen, loses

credibitility and value

12

O © Viscalculation of block execution time can cause network DoS

Scenario 1: Exhaust resources

Background info.
Resources available to
blockchains are limited.
These resources include
memory usage, storage 1/0,
computation,

transaction/block size and
state database size.

Attack.

The hacker sends a malicious
transaction to cause block
execution taking too long

*One unit of weight is one picosecond of
execution time, that is 10**12 weight =1
second, or 1,000 weight = 1 nanosecond, on
fixed reference hardware

[> Security Research Labs

network DoS

The hacker abuses a vulnerability in the weight*
calculation, causing the nodes to miss their
chance to generate new blocks, resulting in

A

Hacker

Transactions

Transfer X DOTs From Alice to Bob

Y}

Weight* is a
representation of
block execution
time.

Vote Yay on Proposal Y

Nominate validator M with Z Dots

/
|

A transaction is a piece of
information that comes
from outside the chain and
is included in a block.

13

Q O Hackers can craft and gossip a nested transaction causing nodes to miss their slots and
fail at block production, and potentially halting the blockchain

Hacker nests
transaction
sudo_as(sudo_as(sudo_

as(...)))) causing
exponential complexity
of the get dispatch info
weight calculation
function

Scenario 1: Vulnerable Code in sudo_as transaction

#[weight = (
call.get_dispatch_info().weight
.saturating_add(16 000)
// AccountData for inner call origin accountdata.
.saturating_add(T::DbWeight::get().reads writes(1, 1)),

call.get_dispatch_info().class
)] Get dispatch Get dispatch

fn sudo_as(origin, info info

who: <T::Lookup as StaticLookup>::Source,

Get dispatch Get dispatch
info info

To receive the sudo_as transaction call dispatch class
and weight, the getter function to receive the dispatch

|

information that holds both weight and class is called

twice Example: nesting sudo_as 41 times results in a call
tree with 2240 = 1’099°511'627°776 leaves

[> Security Research Labs 14

© An arithmetic overflow in the weight calculation allows hacker to exhaust chain resources

Hacking goal

Manipulate
program flow

Bug type

Unsafe arithmetic

Bug impact

Avail. Integrity

Abuse an operation to edit values
to your advantage

Example:
Competitor

sabotages
credibility of the
chain

[> Security Research Labs

(@)

The cost (“weight”) of

some blockchain

function is calculated

based on the input’s
length; an arithmetic
overflow will trigger a

“wrap around”
behavior

Competitor calls
function with large
input parameter,
causing a huge
discrepancy between

the calculated weight
and the computational
work required

The blockchain acts
contrary to its intended
programming, loses

credibility and value

15

O O nteger overflows can lead to financial loss or denial of service

Scenario 1: Vulnerable Code

// verify that relayer is paying actual dispatch weight

let actual _dispatch_weight: Weight = messages
.values()
.map(|lane_messages| lane messages
.messages
.iter()
.map(T::MessageDispatch::dispatch_weight)
.sum: :<Weight>()

)
.sum();
if all>wed dispatch_weight < actual_dispatch_weight {

::InvalidMessagesDispatchWeight.into());

The hacker sends a malicious transaction with a large proof in
one of these queues, causing a denial of service because of the
“wrap around” behavior when sum() is executed.

[> Security Research Labs

Attack sequence

Hacker transmits a receive_messages_proof transaction
containing a large proof struct and a high value for
messages_count

@ Node that executes the block will timeout, missing their

production slot

TRANSMIT
receive_messages_proof...,
proof=vec![message(27232, REGULAR_PAYLOAD)],
messages_count=2132, ...)

e . A
| olol

NODE TIMEOUTS TRYING TO
EXECUTE THE BLOCK O‘Q

Node

Hacker

16

G 0 Bonus vulnerability: Arithmetic overflow prevention code leads to logic bug

Scenario 1: Vulnerable Code To circumvent overflows, developers will use “safe

mathematic operations”, such as checked_add or
let messages_in_the_proof = end.checked_sub(begin) saturating_add. These add a new layer of complexity: the

.and_then(|diff| diff.checked add(1)) code must handle edge cases properly
.unwrap_or(9);

if messages_in_the proof != messages count {
return Err(MessageProofError::MessagesCountMismatch);

}

let mut messages = Vec::with capacity(end);

TRANSMIT
receive_message_proof(begin=0,

Attack sequence

Hacker

. . end=18446744073709551615, message_count=0)
Hacker transmits a receive_message_proof
transaction containing an end value of u64::MAX

and begin and message_count of 0, causing a e > lr—ﬂ_'r-“

vector to be allocated that has size u64::MAX NODE CRASHES TRYING TO 0‘9

EXECUTE THE BLOCK

Node

@ Node that executes the block panics on trying to
allocate the vector

[> Security Research Labs 17

Q Logic bugs can enable hackers to gain unfair advantages and rewards

Hacking goal

Manipulate
program flow

Bug type

Unsafe arithmetic

Bug impact

Avail. Integrity

Abuse the logic of the chain against
itself, gaining some reward in the

process

Example:
Hacker exploits
logic bug present

in source code to
spoof their
identity

[> Security Research Labs

(@)

Hacker claims a

legitimate identity on

the blockchain and

monitors the network
to figure out when the

registrar will hand out
its sentence

Hacker requests a
spoofed identity
immediately between
the time when the

registrar submits their
judgment and when it
is accepted on-chain

The hacker now
controls a validated

spoofed identity
because the code did

not check which
identity was being
validated

18

G e Hackers can spoof their identity by re-setting it right before the judgement is given

By monitoring the network, a hacker can figure
out when a registrar will provide judgement on
their identity and rush to include a transaction
modifying their requested identity, with a higher
tip so it gets executed before the judgement.

[> Security Research Labs

Attack sequence

Hacker requests for legitimate
identity to be judged “hello, |
am legit_identity and here is
my proof”

@ Registrar provides judgement
on identity “hello User, your
identity is correct”

@ Hacker requests for spoofed
identity “hello, am
spoofed_identity” with high
tip, thereby running ahead of
transaction (2)

19

G Unhandled return values can cause the nodes to panic, allowing a hacker to DoS the chain

Hacking goal

DoS nodes

Bug type

Reachable panics

Bug impact

Avail. Integrity

Cause every available node to
panic and cause a DoS

Example:
Hacker launches
DoS attack

against chain for
supply-chain
attack

[> Security Research Labs

Non-explicit handling
of a function’s result

assumes that it cannot
return a “None” value

Hacker causes all the
nodes to panic by
calling a transaction

with a high value as
parameter

The blockchain is
frozen, functionality is
halted for projects

using the chain, and
the ecosystem loses
credibitility and value

20

G Triggering Rust panic conditions can compromise chain availability

Scenario 1: Vulnerable code

Call::Bids(Call::create_bid {
BidDetails {
currency: CENTS,
dot_amount: 5734123568823053662,
quantity of _data_in_bytes: 31768
}
})

create_bid INVOKES get_dot _to_token, PASSING
dot_amount

fn get_dot_to_token (dot_amount: ul28) -> ul28 {
dot_amount.checked_mul(T::DOTToTokenRate::get()).unwrap();

| |

Rust chooses to panic when None is returned in order to
avoid any unexpected behavior.

In such cases, the runtime assumes that it is better to
stop the program instead of using an unexpected value.

[> Security Research Labs

Attack sequence

Hacker transmits a create_bid transaction containing an
unusually high dot_amount (close to u128::MAX)

@ Node that executes the block crashes

a

TRANSMIT

create_bid(CENTS, 5734123568823053662, 31768)

Hacker

Node CRASHES TRYING TO
EXECUTE THE BLOCK

- IR
o'z'e

Node

21

Q Wrong configuration in runtime allows hacker to fill up blockchain’s storage

Hacking goal

Abuse business
logic

Bug type Bug impact

Avail. Integrity

Incorrect usage of

standard patterns

Abuse a misconfiguration allows a
hacker to gain a financial
advantage or cause DoS

Example:
Hacktivist drives

down credibility
of chain

[> Security Research Labs

Wrongly configured
runtime parameter

allows the creation of

an account for a
derisory amount of
money

Hacktivist creates a
large number of
accounts for a small
amount of money,

cluttering the storage
of the chain

The blockchain’s
storage size increases,
causing longer
transaction times; it

loses credibitility and
value

22

Q A bad runtime configuration can open vulnerabilities in the blockchain

Scenario 1: Vulnerable Code

pub const UNITS: Balance

Attack

1_000_000_000_000; If ExistentialDeposit is set to a small value, a hacker could create a lot of
UNITS / 100; accounts which will fill up the storage of the blockchain, using only a small
amount of money for transaction costs.

pub const CENTS: Balance

parameter_types! {

pub const ExistentialDeposit: Balance = 0;

—l
pub const MaxLocks: u32 = 50; fu” account — balance(O)
pub const MaxReserves: u32 = 50;

full account — balance(0)

P

full account — balance(0)

—p
batch[transfer(new_account, 1), ...]

Each account is represented by an Account
structure which keeps track of user’s Hacker
balance and Substrate specific reference

counters, but it can also be enhanced with Setting an existential deposit of 1 m
project specific parameters. This data means setting an existential deposit

structure lives in the storage of the of 0.000000000001 UNITS, which is | B el
blockchain if the account has a balance of not enough to prevent spamming

at least ExistentialDeposit. the creating of new accounts.

1 DOT

[> Security Research Labs 23

5€

0.01 €

G Non existing storage deposits allows hacker to fill up blockchain’s storage

Hacking goal Bug type Bug impact Avail. Integrity

Reduce chain useability by filling its

Slow down chain | BSreIE =N EIEIT storage

Chain storage
increases, causing
longer transaction

Disgruntled insider
creates many storage
items for a small

Missing storage
deposit for the

Example:
Disgruntled
creation of large
database items allows
spamming this process

insider drives
down credibility
of chain

times and harder
operability; it loses
credibitility and value

amount of money,
cluttering chain storage

[> Security Research Labs 24

G Insufficient storage deposits can allow a hacker to cheaply fill the blockchain storage

Storage bloating refers
to the phenomenon of
excessive accumulation
of data within a
blockchain network,
leading to increased
storage requirements
and potential
operational
inefficiencies

Spamming millions of
Bridges::register() calls
could result in 1GB of

storage filled for only
~USD 25’000 (compared
to tens of millions of S
in other blockchains).

[> Security Research Labs

Scenario 1: Vulnerable Code

pub storage RequiredStakeForStakeAndSlash: Balance = 1_000 000;

pub fn register(origin: OriginFor<T>, valid till: T::BlockNumber) -> DispatchResult {

let relayer = ensure_signed(origin)?;

RegisteredRelayers::<T>::try mutate(&relayer, |maybe registration| -> DispatchResult {
let mut registration = maybe_registration

.unwrap_or_else(|| Registration { valid till, stake: Zero::zero() });

Transactions “\._ SPAM with REGISTER
) calls

SPAM with REGISTER
calls
Register bridge relayer

Hacker
Register bridge relayer

Register bridge relayer

continues

25

Agenda

[> Security Research Labs

" |ntro to third-generation blockchains
= Five types of blockchain hacking

} Fuzzing blockchains effectively

26

Three analysis techniques to find blockchain bugs

0 0 @

_ _ . . IELGENENS
Static analysis Fuzzing Manual review

= Static analysis should be
done as part of
development process,
using tools such as
semgrep and dylint

Wrongly-priced
transactions

B) Unsafe arithmetic Security testing then

typically starts with fuzz

testing, which is
particularly strong in
finding availability bugs

[C)Reachable panics

Before an economic
launch, every project
should also go through
security auditing
including manual review

Incorrect usage of
standard patterns

7/////////////
Working on it
2277

G Storage bloating

NN

[> Security Research Labs

We created software to find bugs in all these categories, this is our fuzz engine

AFL++ and v) Seed pool Seed Input
utate binar
Eg?egg fuzz input and ! 0 SELECTION 0 MUTATE
coverage o transform into 9 = g g ul > a
guided fuzz transactions (=API . . r;
Custom engine calls) /
parser-based SPLIT BY
fuzzing: DELIMITER aefdQ5 ******** hdcalb ******** cdeal2
Transform _
binary stream oS fdo Transfer 3 DOTs From Alice to Bob
of data into Powerful random | aefd05 ransfer s From Alice to Bo
mutator permutation to bdca3b == | \ote Yay on Proposal #5

list of

given binary string

cdeal?

runtime calls Nominate validator M with 2 Dots

and run
against target

TRANSFORM INTO
TRANSACTION USING ENCODER

program

[> Security Research Labs

Substrate-
based target

Run extracted
transactions/API
calls against the
target program on
a predefined state

ADD TO SEED
POOL IF
ADDITIONAL
COVERAGE

-
,f

LN B
—
-

\
‘_’ DROP IF NO ADDITIONAL
COVERAGE

RUN AGAINST
TARGET

-DEMO-

28

- Demo -

exec speed : 13/sec

execs done : 4.96M

edges found : 98.6k (11.08%)
saved crashes : 0

louis@enceladus: ~

{mainaflfuzzer} (. 1

[fast]q
11 results

— process timing
run time :

last new find :
last saved crash :

9 days, 20 hrs, 17 min, 8 sec
0 days, 5 hrs, 57 min, 54 sec
none seen yet

cycles done : 0
corpus count : 50.0k
saved crashes : 0

No crash has been found so far

Minimized the corpus (1456236 -> 33472 files)

Launched afl
Launched honggfuzz

See more live info by running

now trying

— cycle progress
now processing : 22.0 (0.0%)
runs timed out : 0 (0.00%)

I— stage progress

: bitflip 8/8

stage execs :
total execs :
exec speed :

last saved hang : none seen yet

14.3k/22.2k (64.40%)
2.01M
20.12/sec (slow!)

saved hangs : 0

map coverage

map density :
count coverage :

findings in d
favored +items

new edges on :
total crashes :
total tmouts :

1.31% / 11.09%
4.89 bits/tuple
epth

: 7667 (15.32%)
7323 (14.64%)

0 (0 saved)

0 (0 saved)

— fuzzing strategy

yields

tail -f ./output/kitchensink-fuzzer/logs/afl.log

or

tail -f ./output/kitchensink-fuzzer/logs/honggfuzz.log

exec speed : 78/sec

execs done : 4.50M

edges found : 98.7k (11.08%)
saved crashes : 0

No crash has been found so far

Minimized the corpus (1474272 -> 33817 files)

Launched afl

Launched honggfuzz

See more live info by running
tail -f ./output/kitchensink-fuzzer/logs/afl.log

or

tail -f ./output/kitchensink-fuzzer/logs/honggfuzz.log

exec speed : 19/sec

execs done : 2.01M

edges found : 98.7k (11.09%)
saved crashes : 0

No crash has been found so far

bit flips :
byte flips :
arithmetics :
known 1ints :
dictionary :
havoc/splice :
py/custom/rq :
trim/eff :

5/221k, ©/221k, 0/221k
0/5412, 1/5409, 0/5403
0/302k, 0/161k, 0/70.0k
0/26.1k, 0/121k, 0/206k
0/0, 0/0, 0/0, 0/0

0/624, 0/540

unused, unused, 0/93, 0/0
disabled, 0.00%

item geometry
levels : 2
pending : 48.8k
pend fav : 7660
own finds : 6
imported : 195
stability : 99.55%

[cpu006:]

Iterations :
Mode [3/3]
Target :
Threads :
Speed :
Crashes
Timeouts :
Corpus Size :
Cov Update :
Coverage :

--------- [© days 07 hrs 59 mins 48 secs |

10,748,228 [10.75M]

: Feedback Driven Mode
./target/honggfuzz/x86_64-unknow.....

17, CPUs: 64, CPU%: 3412% [53%/CPU]
164/sec [avg: 213]

0 [20 sec]

/release/kitchensink-fuzzer

: @ [unique: @, blocklist: @, verified: 0]

55,961, max: 60,000 bytes, init: 33,817 files

0 days 00 hrs 00 mins 07 secs ago

edge: 69,150/766,112 [9%] pc: 544 cmp: 2,661,975

------------------- [LOGS] —-------

__________ / honggfuzz 2.5 /-

z:3866 Tm:2,945,902us (i/b/h/e/p/c) New:0/0/0/0/0/1, Cur:0/0/0/0/0/7
$z:697 Tm:318,140us (i/b/h/e/p/c) New:0/0/0/0/0/1, Cur:e/e/e/e/e/1e
S$z:64 Tm:419,735us (i/b/h/e/p/c) New:0/0/0/0/0/1, Cur:0/0/0/0/0/1
$z:2796 Tm:1,816,095us (i/b/h/e/p/c) New:0/0/0/0/0/1, Cur:e/e/e/e/e/7

$z:5058 Tm:425,394us

$z:4105
$z:1758
$z:4093
$z:4460

Tm:363,185us
Tm:914,981us
Tm:341,163us
Tm:334,445us

(i/b/h/e/p/c) New:0/0/0/0/0/2,
(i/b/h/e/p/c) New:0/0/0/0/0/1,
(i/b/h/e/p/c) New:0/0/0/0/0/1,
(i/b/h/e/p/c) New:0/0/0/0/0/3,
(i/b/h/e/p/c) New:0/0/0/0/0/3,

Cur:0/0/0/0/0/3
Cur:0/e/e/0/0/3
Cur:0/0/0/0/0/2
Cur:0/e/e/e/0/3
Cur:0/0/0/0/0/20

[> Security Research Labs

29

lib.rs - demo [SSH: fuzzy-bear] - Visual Studio Code

| @ EXPLORER ® lib.rs .../runtime/... M X | %% Cargo.toml U ® main.rs U ® lib.rs .../pallets/... M % @O
v DEMO [SSH: FUZZY-BEAR] bin > node-template > runtime > src > ® lib.rs
/C) 2 -github 272 impl pallet template::Config for Runtime {
> .maintain 273" | type RuntimeEvent = RuntimeEvent;
- bin P 274 | type WeightInfo = pallet template::weights::SubstrateWeight<Runtime>;
g& > node 275 }
276 :
v node-template ¥ . , - : ’ C S . apon y Sl
{> 277 // Create the runtime by composing the FRAME pallets that were previously configured.
& gltes 278 construct runtime! (
> node 279 pub struct Runtime
I___‘® v pallets / template @ 280 where
v src @ 281 ‘ Block = Block,
EE:] ® benchmarking.rs 282 NodeBlock = O[..)an:le: :Block, o
® lib.rs M 283 UncheckedExtrinsic = UncheckedExtrinsic,
284 {
S o 285 System: frame system,
® testsurs 286 Timestamp: pallet timestamp,
® weights.rs 287 Aura: pallet aura,
¥ Cargo.toml 288 Grandpa: pallet grandpa,
® README.md 289 Balances: pallet balances,
T P ° 290 TransactionPayment: pallet transaction payment,
i " 291 Sudo: pallet sudo,
292 // Include the custom logic from the pallet-template in the runtime.
> output 293 1 TemplateModule: pallet template,
\/ Ssrc ® 294 }
® main.rs u 295 i -
> target 296 :
© _gitignore U 297 /// The address format for describing accounts.
O Cargnitaail 5 298 pub type Address - sp_runtime: :Mulfc1Address<Ac§ountId, ()>;
A 299 /// Block header type as expected by this runtime.
Gresing_sead 5 300 pub type Header = generic::Header<BlockNumber, BlakeTwo0256>;
SSIC e 301 /// Block type as expected by this runtime.
@ ‘@ lib.rs M 302 pub type Block = generic::Block<Header, UncheckedExtrinsic>;
& hnild re M 303 /// The SignedExtension to the basic transaction logic.
{&5 »> OUTLINE 304 pub type SignedExtra = (
> TIMELINE 305 frame system::CheckNonZeroSender<Runtime>,

S ER(To M C Tl 0 polkadot-v0.9.43* & ®OA0 WO --NORMAL-- Ln295,Col2 TabSize:4 UTF-8 LF Rust & [

https://github.com/srlabs/substrate-runtime-fuzzer

O Product ¥ Solutions ¥ Open Source ¥ Pricing Search or jump to... Sign in ‘ Sign up ’

H srlabs / substrate-runtime-fuzzer Pubic L Notifications % Fork 0 W Star 4~

<> Code () Issues 1% Pull requests 0, Security [~ Insights

¥ main ~ § 3branches © 0tags Go to file About
A fuzzing harness for Substrate-based
e louismerlin Update substrate to polkadot-v0.9.43 d3d67d9 last month () 10 commits blockchains.
f kitchensink-fuzzer Update substrate to polkadot-v0.9.43 last month Blockenah fzzing sdbshals poliatiol
kusama
M kusama-fuzzer Update substrate to polkadot-v0.9.43 last month
00 Readme
0 node-template-fuzzer Update substrate to polkadot-v0.9.43 last month
58 Apache-2.0, MIT licenses found
[statemine-fuzzer Update substrate to polkadot-v0.9.43 last month o
A Activity
[.gitignore First push 2 months ago ¥ 4 stars
[Cargo.toml Add release build of certain dependencies last month ® 9 watching
: % 0 forks
[LICENSE-APACHE First push 2 months ago
Report repository
[LICENSE-MIT First push 2 months ago
[> Security Research Labs 31

https://github.com/srlabs/ziggy

O Product ¥ Solutions ¥ Open Source ~ Pricing Search or jump to... Sign in ‘ Sign up ’

H srlabs/ziggy Pubiic 2 Notifications % Fork 2 Y¢ Star 27~

<> Code () lssues 7 {9 Pull requests 1 ® Actions [Projects O, Security [~ Insights

¥ main ~ ¥ 5branches © 19 tags Go to file About
A multi-fuzzer management utility for all
e louismerlin Prepare for 0.6.3 release 8a3a5a9 onJun 20) 163 commits of your Rust fuzzing needs &
fn examples Fix clippy warning 2 months ago Rt fuzzihg L Bhzzer
honggfuzz
My src Add new option to skip initial minimization 2 months ago
Readme
[.gitignore Add Rust gitignore last year s
58 Apache-2.0 license
[3 CHANGELOG.md Prepare for 0.6.3 release 2 months ago o
A Activity
[Cargo.lock Add new option to skip initial minimization 2 months ago ¥y 27 stars
[Cargo.toml Prepare for 0.6.3 release 2 months ago ® 7 watching
2 forks
[LICENSE Initial commit last year L

[> Security Research Labs 32

We continuously find bugs on a variety of chains

Number of security issues found
Issue type in 45 security reviews since January 2022

Wrongly-priced transactions Benchmarking issues

Unsafe arithmetic Arithmetic issues 18

ii

Reachable panic issues 15
G Reachable panics
Memory issues

Configuration issues 12

Incorrect usage of standard
patterns

Cryptography issues

Improper authentication

G Storage bloating Storage issues 12

Semi-automated testing is most effective in detecting
insufficient benchmarking, unsafe arithmetic usage, reachable panics and configuration issues

[> Security Research Labs

33

Takeaways

Questions?

1 Blockchains contain fascinating hacking puzzles

Most bugs fall into five categories, many are crashes

Open-source tools enable mostly-automated reviews

[> Security Research Labs

Karsten Nohl <nohl@srlabs.de>
Louis Merlin <louis@srlabs.de>
Gabriel Arnautu <gabriel@srlabs.de>

34

