
Big Match:
How I Learned to Stop
Reversing and Love the
Strings

Paolo MONTESEL / babush
Myself, Inc

1

Abstract

We’ve all been there: after a month of reversing, you

realize you are looking at open-source code.

Why?

Because you didn’t copy-paste the correct string into

Google.

So we asked ourselves: “can’t we not just grep all strings
from GitHub and stop this nonsense?”

2

About myself

● Self-employed security and whatnot guy

● Reversing ∩ data-science ∩ ML

● Interested in data-driven stuff

● Previous research: MikroTik, Naver LINE,

Bison/Flex parsers, other

● CTF player for mhackeroni

○ Just won Hack-A-Sat :D

3

About rev.ng

● https://rev.ng/

● Building an LLVM-based decompiler

● Binary analysis, reverse engineering

● C++/LLVM consulting

● Big Match was my ~20% project there (:

4

https://rev.ng/

5

Intro

Life of a Reverser

6

🙃

Other variations

● grep.app

● GitHub/Gitlab code search

● https://sourcegraph.com/search

● you name it

○ and tell me

7

https://grep.app
https://sourcegraph.com/search

Why strings?

● Easy to see

● Easy to search for

● (mostly) compiler-independent
● (mostly) platform-independent
● Rarely change during a repo history

8

9

Time for a story

It’s 2018…

● Graduated from University

● Need money
● Don’t want to help uncle with grape harvesting
● Somebody found trivial buffer overflows in Naver

LINE’s VoIP stack (libAmp.so)

10

It’s 2018…

● Graduated from University

● Need money
● Don’t want to help uncle with grape harvesting
● Somebody found trivial buffer overflows in Naver

LINE’s VoIP stack

11

STOP!

BOUNTY TIME!

Life of a Reverser (again)

12

🙃

Life of a Reverser (again)

13

🙃NOPE

Static libraries

14

libAmp.so

pjsip another lib

liblollibasdlibwhateverlibsrtp

Life of a Reverser (again)

15

16

THE Problem

Strings are not perfect

● Nested statically-linked libraries

● Parent libraries without strings

● Not unique
● Weird strings

○ Hard to find
● Google Search going A.I.
● Obfuscation (we will ignore this :D)

17

18

THE Solution

A huge Database of strings!

1. Scan all C/C++ projects on GitHub

2. Harvest strings

3. Throw ‘em into a Database

4. Query using target binary

5. …

6. PROFIT!!!

19

20

Moar problems

Not so easy

● How to download from GitHub at scale?

● Parsing C/C++ is hard and slow

● Multiple versions on the same lib

● Projects with many forks
○ Linux kernel has 50k+ forks

● How do you score results?

21

Not so easy (part 2)

● Personal project
● Limited resources (time, money, infra)

● KISS

22

23

Our solution

Outline

1. Get the source code of the top-N C/C++
repositories on GitHub (top ~ most starred)

2. Deduplicate the repositories
3. Extract the strings
4. De-escape the strings ('\n' => newline)
5. Hash the strings
6. Store them in some kind of database
7. Query the database using strings from target
8. Cluster the query results

24

25

Dataset

Getting the top-N repos

● Query GitHub API for projects

● Sort by most starred
● Clone them

26

Getting the top-N repos

● Query GitHub API for projects

● Sort by most starred
● Clone them

27RATE-LIMITING

Getting the top-N repos

● Query GitHub API for projects

● Sort by most starred
● Clone them

28BANDWIDTH

Getting the top-N repos

● Query GitHub API for projects

● Sort by most starred
● Clone them

29TIME

GHTorrent

● Aka GitHub Torrent

○ Started in 2012

○ Prof. Georgios Gousios @ TU Delft

● Polls GitHub public events API

● Analyzes events

● Creates a relational-view of GH

● Available as MySQL or MongoDB dumps

30

31

GHTorrent: the good

GHTorrent: moar good

● You can import their dumps locally
● Query with SQL

● Metadata: projects, forks, stars, commits

● Most of the stuff we need 🙃

32

GHTorrent: the bad

● Best-effort
○ Partial commit history

○ Missing/outdated data

● No source-code

● Looks like it’s dead 😞
○ This project requires $$$ and people
○ E.g.: Microsoft used to sponsor them

33

34

https://www.zdnet.com/article/microsoft-finalizes-its-7-5-billion-github-acquisition/

GHTorrent: mongo

● SQL was used in the exploratory phase

○ We didn’t need all the tables

○ Too slow 👎
● Custom python tool

○ bson dumps

○ pymongo’s bson.decode_iter

○ Get info about projects, forks, and commits

○ Fast 👍

35

36

Repo Deduplication

Repository deduplication

● We don't want forks
● First ~100K repos from GitHub = ~1.4TB of gzip'd

source code

○ Without git history

● Duplicated data = bad search results

● GHTorrent tracks forks created w/ “Fork” button

37

Repository deduplication

● We don't want forks
● First ~100K repos from GitHub = ~1.4TB of gzip'd

source code

○ Without git history

● Duplicated data = bad search results

● GHTorrent tracks forks created w/ “Fork” button

38SADFACE.JPG

Repository deduplication: ++problems

● How do you define a project?

● How do you define repo A is a duplicate of repo B?

● How about popular monorepos?

○ https://github.com/freebsd/freebsd-src

We decided to use root commits* + custom algorithm

39

*root commit = first commit in repo history

https://github.com/freebsd/freebsd-src

Workaround: git history

With infinite resources:

1. Clone a repo

2. Put every commit in a graph DB

3. Connect commits using parent/child relationship

4. Repeat 1-3 until you are done, then…

5. Look for root commits
6. For each root commit, keep the most-starred repo

40

Workaround workaround: GHTorrent

● Deduplicate before cloning

○ Best effort

● Strike a balance

○ Deduplicate enough => only keep good stuff
○ Don’t over-do it => remove only bad stuff

We thought we had a perfect solution but…

41

Repository deduplication: ++problems

People do weird s**t with their git history.

42

Story time 2

43

Story time 2: LibreCAD

44

Story time 2: user “youarefunny”

45

Spoon-Knife

LibreCAD

Spoon-Knife
History

fork

LibreCAD
History

fork

Frankenstein
History+

merge

PR
accepted

If you don’t believe me

https://github.com/LibreCAD/LibreCAD/commit/f08a37f282dd30ce7cb759d6cf8981c982290170 46

https://github.com/LibreCAD/LibreCAD/commit/f08a37f282dd30ce7cb759d6cf8981c982290170

What’s the problem?

● LibreCAD now has 2 root commits
● Spoon-Knife has more stars

=> Our algo throws away LibreCAD

47

What’s the problem?

● LibreCAD now has 2 root commits
● Spoon-Knife has more stars

=> Our algo throws away LibreCAD

48I HATE LIFE

Best-effort deduplication

● GHTorrent

○ (parent commit, child commit) partial relations

○ (commit, repo) partial relations

49

Best-effort deduplication: the algo

1. Find commit without parents (parentless commit)

2. Create a history subgraph following parent => child edges

3. Group all repos associated with the commits from 2 (repository group)

4. For every group, the most starred repo will be considered a parent,

the others will be children

○ We have parent repo => child repo edges now

5. Do 1-4 for every repo, create huge graph of parent/child repos
6. Only crawl repos without a parent

50

51

I know that was hard

Deduplication example

52

Repo group 1

53

Repo group 2

54

Partial repo graph

55

Repo graph

56

Deduplication: full disclosure

57

● I know our algo is not perfect
● We found it has a good balance

58

Processing repos

Extracting strings

59

● Parsing C/C++ files is non-trivial
○ macros, includes, other black magic

● We wanted a fast PoC

○ ripgrep

https://github.com/BurntSushi/ripgrep

Processing strings

60

● De-escape, aka ‘\n’ => byte 0x0A

○ noescape

○ https://github.com/thebabush/noescape

● Hash

○ sha256

https://github.com/thebabush/noescape

61

Polishing the data

Search engine 101

62

● Vector-space model
● Score = similarity between vectors

Why?

63

● Swap documents with repositories

● Swap words with string hashes

Building a robust data pipeline

64

● Needed a fast and solid pipeline

● We went with the usual data-science

frameworks

Building a robust data pipeline

65

● Needed a fast and solid pipeline

● We went with the usual data-science

frameworks

NOPE

Bash

66

It’s bash all the way

https://rev.ng/blog/bashml/post.html

https://rev.ng/blog/bashml/post.html

Algorithms, parameter estimation

67

Vector-space model requires some choices

● Built a synthetic dataset using Gentoo

○ Statically link many packages

○ Use it as ground truth

● Results

○ Weighting: tf-idf
○ Scoring: cosine similarity

Removing useless strings

68

● Did some tests on synthetic dataset

○ Common strings are bad (lower accuracy)

■ e.g.: “error”, etc…

○ Removed top 10K most popular strings

Removing useless strings

69

Still bad results :(

70

Still bad results :(

71

● Let’s say a target uses zlib and libssl
● One of the two will be buried in the results

○ Both libs have many forks/duplicates

Spectral Co-Clustering 72

re
p

o
s

strings

73

Putting everything into production

Python + Sparse Matrices

74

75

Moar deduplication

Resources = $$$

● Avg RAM per repo ~40kB
● Avg string count ~23k

76

Second dedup algo

● Take a repo

● Look for K repos of similar size
● If (jaccard_similarity(A, B) > threshold) => delete B

● Complexity O(N * K)

Takes care of a lot of linux/Android/etc source dumps.

77

78

DEMO
https://bigmatch.rev.ng

79

Almost done,
I promise

Pros

● Perfect string-matching works surprisingly well

● Privacy
○ if a hash doesn't match, we don't know what

string it represents

● 0% machine learning

80

Cons

● Only works for targets with good strings
● No partial matching
● Query speed good

○ But this is a PoC-sized DB

● `strings` is not very good

○ Wrong prefixes (e.g.: "XRWFHello World")

○ Better use a decompiler to extract strings

81

Future

● Integrate Big Match with rev.ng decompiler
● Partial string matching

● Support magic numbers/arrays

● Use strings to guess library version-range

● Add strings from decompiled firmwares/etc

● Actually parse C/C++ files

○ E.g.: per-function strings

○ I actually have a demo of this (:

82

Some other applications

● Figure out which libraries are used in a monorepo
○ Find vulnerable deps that GH doesn’t catch :D

● Malware classification

● Other languages

83

Happy ending

84

No grape harvesting

w/ uncle

https://bugbounty.linecorp.com/en/halloffame/2018/

Moar
slides

85

JK

86

THANK
YOU!

87

Questions?

88

● https://rev.ng/blog/big-match/post.html

● https://bigmatch.rev.ng

● http://www.babush.me/

babushkam

pmontesel

https://rev.ng/blog/big-match/post.html
https://bigmatch.rev.ng
http://www.babush.me/

