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Abstract

We’ve all been there: after a month of reversing, you 

realize you are looking at open-source code.

Why?

Because you didn’t copy-paste the correct string into 

Google.

So we asked ourselves: “can’t we not just grep all strings 
from GitHub and stop this nonsense?”
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About myself

● Self-employed security and whatnot guy

● Reversing ∩ data-science ∩ ML

● Interested in data-driven stuff

● Previous research: MikroTik, Naver LINE, 

Bison/Flex parsers, other

● CTF player for mhackeroni

○ Just won Hack-A-Sat :D
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About rev.ng

● https://rev.ng/

● Building an LLVM-based decompiler

● Binary analysis, reverse engineering

● C++/LLVM consulting

● Big Match was my ~20% project there (:
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https://rev.ng/
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Intro



Life of a Reverser
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🙃



Other variations

● grep.app

● GitHub/Gitlab code search

● https://sourcegraph.com/search

● you name it

○ and tell me
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https://grep.app
https://sourcegraph.com/search


Why strings?

● Easy to see

● Easy to search for

● (mostly) compiler-independent
● (mostly) platform-independent
● Rarely change during a repo history
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Time for a story



It’s 2018…

● Graduated from University

● Need money
● Don’t want to help uncle with grape harvesting
● Somebody found trivial buffer overflows in Naver 

LINE’s VoIP stack (libAmp.so)

10



It’s 2018…

● Graduated from University

● Need money
● Don’t want to help uncle with grape harvesting
● Somebody found trivial buffer overflows in Naver 

LINE’s VoIP stack
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STOP!

BOUNTY TIME!



Life of a Reverser (again)
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🙃



Life of a Reverser (again)
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🙃NOPE



Static libraries
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libAmp.so

pjsip another lib

liblollibasdlibwhateverlibsrtp



Life of a Reverser (again)
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THE Problem



Strings are not perfect

● Nested statically-linked libraries

● Parent libraries without strings

● Not unique
● Weird strings

○ Hard to find
● Google Search going A.I.
● Obfuscation (we will ignore this :D)
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THE Solution



A huge Database of strings!

1. Scan all C/C++ projects on GitHub

2. Harvest strings

3. Throw ‘em into a Database

4. Query using target binary

5. …

6. PROFIT!!!
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Moar problems



Not so easy

● How to download from GitHub at scale?

● Parsing C/C++ is hard and slow

● Multiple versions on the same lib

● Projects with many forks
○ Linux kernel has 50k+ forks

● How do you score results?
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Not so easy (part 2)

● Personal project
● Limited resources (time, money, infra)

● KISS
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Our solution



Outline

1. Get the source code of the top-N C/C++ 
repositories on GitHub (top ~ most starred)

2. Deduplicate the repositories
3. Extract the strings
4. De-escape the strings ('\n' => newline)
5. Hash the strings
6. Store them in some kind of database
7. Query the database using strings from target
8. Cluster the query results
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Dataset



Getting the top-N repos

● Query GitHub API for projects

● Sort by most starred
● Clone them
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Getting the top-N repos

● Query GitHub API for projects

● Sort by most starred
● Clone them

27RATE-LIMITING



Getting the top-N repos

● Query GitHub API for projects

● Sort by most starred
● Clone them
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Getting the top-N repos

● Query GitHub API for projects

● Sort by most starred
● Clone them
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GHTorrent

● Aka GitHub Torrent

○ Started in 2012

○ Prof. Georgios Gousios @ TU Delft

● Polls GitHub public events API

● Analyzes events

● Creates a relational-view of GH

● Available as MySQL or MongoDB dumps
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GHTorrent: the good



GHTorrent: moar good

● You can import their dumps locally
● Query with SQL

● Metadata: projects, forks, stars, commits

● Most of the stuff we need 🙃 
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GHTorrent: the bad

● Best-effort
○ Partial commit history

○ Missing/outdated data

● No source-code

● Looks like it’s dead 😞
○ This project requires $$$ and people
○ E.g.: Microsoft used to sponsor them
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https://www.zdnet.com/article/microsoft-finalizes-its-7-5-billion-github-acquisition/



GHTorrent: mongo

● SQL was used in the exploratory phase 

○ We didn’t need all the tables

○ Too slow 👎
● Custom python tool

○ bson dumps

○ pymongo’s bson.decode_iter

○ Get info about projects, forks, and commits

○ Fast 👍
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Repo Deduplication



Repository deduplication

● We don't want forks
● First ~100K repos from GitHub = ~1.4TB of gzip'd 

source code

○ Without git history

● Duplicated data = bad search results

● GHTorrent tracks forks created w/ “Fork” button
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Repository deduplication

● We don't want forks
● First ~100K repos from GitHub = ~1.4TB of gzip'd 

source code

○ Without git history

● Duplicated data = bad search results

● GHTorrent tracks forks created w/ “Fork” button
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Repository deduplication: ++problems

● How do you define a project?

● How do you define repo A is a duplicate of repo B?

● How about popular monorepos?

○ https://github.com/freebsd/freebsd-src

We decided to use root commits* + custom algorithm
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*root commit = first commit in repo history

https://github.com/freebsd/freebsd-src


Workaround: git history

With infinite resources:

1. Clone a repo

2. Put every commit in a graph DB

3. Connect commits using parent/child relationship

4. Repeat 1-3 until you are done, then…

5. Look for root commits
6. For each root commit, keep the most-starred repo
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Workaround workaround: GHTorrent

● Deduplicate before cloning

○ Best effort

● Strike a balance

○ Deduplicate enough => only keep good stuff
○ Don’t over-do it => remove only bad stuff

We thought we had a perfect solution but…
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Repository deduplication: ++problems

People do weird s**t with their git history.
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Story time 2
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Story time 2: LibreCAD
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Story time 2: user “youarefunny”
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Spoon-Knife

LibreCAD

Spoon-Knife
History

fork

LibreCAD
History

fork

Frankenstein
History+

merge

PR
accepted



If you don’t believe me

https://github.com/LibreCAD/LibreCAD/commit/f08a37f282dd30ce7cb759d6cf8981c982290170 46

https://github.com/LibreCAD/LibreCAD/commit/f08a37f282dd30ce7cb759d6cf8981c982290170


What’s the problem?

● LibreCAD now has 2 root commits
● Spoon-Knife has more stars

=> Our algo throws away LibreCAD
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What’s the problem?

● LibreCAD now has 2 root commits
● Spoon-Knife has more stars

=> Our algo throws away LibreCAD
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Best-effort deduplication

● GHTorrent

○ (parent commit, child commit) partial relations

○ (commit, repo) partial relations
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Best-effort deduplication: the algo

1. Find commit without parents (parentless commit)

2. Create a history subgraph following parent => child edges

3. Group all repos associated with the commits from 2 (repository group)

4. For every group, the most starred repo will be considered a parent, 

the others will be children

○ We have parent repo => child repo edges now

5. Do 1-4 for every repo, create huge graph of parent/child repos
6. Only crawl repos without a parent
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I know that was hard



Deduplication example
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Repo group 1
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Repo group 2
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Partial repo graph
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Repo graph
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Deduplication: full disclosure
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● I know our algo is not perfect
● We found it has a good balance



58

Processing repos



Extracting strings

59

● Parsing C/C++ files is non-trivial
○ macros, includes, other black magic

● We wanted a fast PoC

○ ripgrep

https://github.com/BurntSushi/ripgrep


Processing strings
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● De-escape, aka ‘\n’ => byte 0x0A

○ noescape

○ https://github.com/thebabush/noescape

● Hash

○ sha256

https://github.com/thebabush/noescape
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Polishing the data



Search engine 101
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● Vector-space model
● Score = similarity between vectors



Why?
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● Swap documents with repositories

● Swap words with string hashes



Building a robust data pipeline
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● Needed a fast and solid pipeline

● We went with the usual data-science 

frameworks



Building a robust data pipeline
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● Needed a fast and solid pipeline

● We went with the usual data-science 

frameworks

NOPE



Bash
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It’s bash all the way

https://rev.ng/blog/bashml/post.html

https://rev.ng/blog/bashml/post.html


Algorithms, parameter estimation
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Vector-space model requires some choices

● Built a synthetic dataset using Gentoo

○ Statically link many packages

○ Use it as ground truth

● Results

○ Weighting: tf-idf
○ Scoring: cosine similarity



Removing useless strings
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● Did some tests on synthetic dataset

○ Common strings are bad (lower accuracy)

■ e.g.: “error”, etc…

○ Removed top 10K most popular strings



Removing useless strings
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Still bad results :(
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Still bad results :(
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● Let’s say a target uses zlib and libssl
● One of the two will be buried in the results

○ Both libs have many forks/duplicates 



Spectral Co-Clustering 72
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Putting everything into production



Python + Sparse Matrices
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Moar deduplication



Resources = $$$

● Avg RAM per repo ~40kB
● Avg string count ~23k

76



Second dedup algo

● Take a repo

● Look for K repos of similar size
● If (jaccard_similarity(A, B) > threshold) => delete B

● Complexity O(N * K)

Takes care of a lot of linux/Android/etc source dumps.
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DEMO
https://bigmatch.rev.ng
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Almost done,
I promise



Pros

● Perfect string-matching works surprisingly well

● Privacy
○ if a hash doesn't match, we don't know what 

string it represents

● 0% machine learning
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Cons

● Only works for targets with good strings
● No partial matching
● Query speed good

○ But this is a PoC-sized DB

● `strings` is not very good

○ Wrong prefixes (e.g.: "XRWFHello World")

○ Better use a decompiler to extract strings
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Future

● Integrate Big Match with rev.ng decompiler
● Partial string matching

● Support magic numbers/arrays

● Use strings to guess library version-range

● Add strings from decompiled firmwares/etc

● Actually parse C/C++ files

○ E.g.: per-function strings

○ I actually have a demo of this (:
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Some other applications

● Figure out which libraries are used in a monorepo
○ Find vulnerable deps that GH doesn’t catch :D

● Malware classification

● Other languages
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Happy ending
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No grape harvesting

w/ uncle

https://bugbounty.linecorp.com/en/halloffame/2018/



Moar 
slides
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JK
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THANK
YOU!
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Questions?
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● https://rev.ng/blog/big-match/post.html

● https://bigmatch.rev.ng

● http://www.babush.me/

babushkam

pmontesel

https://rev.ng/blog/big-match/post.html
https://bigmatch.rev.ng
http://www.babush.me/

