
Rogue CDB: Escaping
from VMware
Workstation Through
the Disk Controller
Wenxu Yin
Senior Vulnerability Researcher,
Qihoo 360

1

About The Speaker

● Wenxu Yin @awxylitol

● Senior Vulnerability Researcher

● Alpha Lab, Vulnerability Research Institute, Qihoo 360

● Hypervisors: VMware Workstation/ESXi and QEMU

● Network Devices: Juniper, SonicWall, Ubiquiti and NETGEAR

2

https://twitter.com/awxylitol

About Vulnerability Research Institute

● OS, Brower and Hypervisor Security Research

● https://vul.360.net

● Over 2000 CVEs

● Pwn2Own 2017 and Tianfu Cup 2018/2019/2020 Champion

● Pwnie Awards 2019/2020

3

https://vul.360.net/

Agenda

I. Disk Controllers and VMware's Implementation

II. Root Cause and Exploit Primitives

III. The Exploitation Process

IV. Takeaways and Q&A

I. Disk Controllers and VMware's
Implementation

SCSI and CDB

What is a disk controller?

➢ Seagate ST11R, an 8-bit ISA RLL hard disk

controller produced in 1990.

➢ PCI/PCIe Interface

➢ SCSI (Small Computer System Interface)

➢ SATA (Serial AT Attachment)

➢ IDE (Integrated Drive Electronics)

https://en.wikipedia.org/wiki/Disk_controller#/media/File:Seagate_ST11R.jpg

SCSI and CDB

What is a disk controller?

➢ VMware Workstation 17.0 Pro

➢ Creating a 64 bit Linux Guest VM

on a Windows Host

➢ SAS (Serial Attached SCSI)

SCSI and CDB

What is a disk controller?

➢ A disk controller is typically plugged into one of the PCI/PCIe slots

on the motherboard and sits between the driver in the OS and the

disks.

➢ In the case of a hypervisor, the emulated disk controller is exposed

to the Guest OS via the emulated PCI interface, and the hard disk

itself is merely a large file stored on the Host OS.

SCSI and CDB

The SCSI specification

➢ SCSI is a protocol used principally to talk to

storage devices such as hard disks and tape drives.

➢ The SCSI standards define commands, protocols,

electrical, optical and logical interfaces.

https://en.wikipedia.org/wiki/SCSI#/media/File:Scsi_logo.svg

SCSI and CDB

https://www.t10.org/scsi-3.jpg

SCSI and CDB

The SCSI specification

➢ Parallel SCSI (formally, SCSI Parallel Interface, or SPI) is the earliest

of the interface implementations in the SCSI family.

➢ Serial Attached SCSI (SAS) is a point-to-point serial protocol. SAS

replaces the older Parallel SCSI.

SCSI and CDB

https://en.wikipedia.org/wiki/Serial_Attached_SCSI#/media/File:The_architecture_of_SAS_layers.svg

SCSI and CDB

The Command Descriptor Block (CDB) protocol

➢ In SCSI standards for transferring data between computers and

peripheral devices, often computer storage, commands are sent in a

CDB.

➢ Each CDB can be a total of 6, 10, 12, or 16 bytes, but later versions

of the SCSI standard also allow for variable-length CDBs.

SCSI and CDB

SCSI Commands Reference Manual 2.1.2 Table 2

SCSI and CDB

The Command Descriptor Block (CDB) protocol

➢ The first byte of a SCSI CDB is an operation

code that specifies the command that the

application client is requesting the device

server to perform

https://www.t10.org/lists/op-num.htm

SCSI and CDB

https://www.t10.org/lists/op-num.htm

VMware's Implementation

How a virtual hard disk device works

➢ lspci -ktv

➢ LSI Logic / Symbios Logic 53c1030 PCI-X Fusion-MPT Dual

Ultra320 SCSI

➢ SCSI Disk Controller from LSI Corporation

➢ VMware emulates it, the default hard disk controller for a 64 bit

Linux Guest VM on VMware Workstation

VMware's Implementation

VMware's Implementation

How a virtual hard disk device works

➢ Driver on Linux is called mptspi

➢ BAR (Base Address Register)

➢ PMIO: BAR0, 0x1400, Size 256

➢ MMIO: BAR1, 0xFEB80000, Size 0x20000;

BAR3, 0xFEBA0000, Size 0x20000;

VMware's Implementation

VMware's Implementation

How a virtual hard disk device works

➢ Linux Kernel 6.1.19

➢ drivers/message/fusion/lsi/mpi_init.h

➢ drivers/message/fusion/lsi/mpi.h

VMware's Implementation

How a virtual hard disk device works

➢ VMware Workstation 17.0.0 Build 20800274

➢ RPC Handler for the LSI SCSI Controller

➢ a2 should be MSG_SCSI_IO_REQUEST from Guest

➢ v6 is malloced to store the overall SCSI CDB Request

VMware's Implementation

VMware's Implementation

How CDB commands are processed in VMware Workstation

➢ Then v6 is passed to the generic SCSI CDB handler function

➢ This function sub_1402129A0() also handles SCSI CDB

from other disk controllers like PVSCSI, BusLogic, etc.

VMware's Implementation

How CDB commands are processed in VMware Workstation

➢ Check is done in sub_140211F30()

➢ If it passes, the CDB is sent to the respective handler functions of

different SCSI devices, like CD Drive or Hard Disk in

sub_14021BEC0()

VMware's Implementation

VMware's Implementation

VMware's Implementation

What kind of check does it have

➢ CDB Length

➢ CDB Operation Code

VMware's Implementation

What kind of check does it have

➢ v5 = *(unsigned int *)(a3 + 48); is the CDB Length set by the Guest

➢ *(unsigned __int8 **)(a3 + 40); is the CDB, and v7 = **(unsigned

__int8 **)(a3 + 40); is the Operation Code

➢ CDB Length and Operation Code have to be consistent

VMware's Implementation

II. Root Cause and Exploit Primitives

Root Cause

Why does this vulnerability exist?

➢ Assumption is broken with the introduction of newer specifications.

https://www.vmware.com/security/advisories/VMSA-2023-0008.html

Root Cause

Why does this vulnerability exist?

➢ a3 is the CDB Length, which can be 0x6,

0xA, 0xC, 0x10, 0x40, 0x41

➢ a2 is the CDB

➢ Clearly, the assumed maximum length of

CDB is 0x10

Root Cause

Why does this vulnerability exist?

➢ Page Heap enabled

➢ Crash at memcpy()

Root Cause

The Fix

➢ VMware Workstation

17.0.1 Build 21139696

➢ Check the Operation Code

Group first

➢ Then check the consistency

between the CDB Length

and the Operation Code

Exploit Primitives

OOB Read

➢ Page Heap enabled

➢ dst/RCX is the 0x158 chunk(v16) + offset 0x138 malloced above

➢ src/RDX is the 0x4228 chunk(v6) + offset 0x41F8 malloced in the

LSI Logic function

Exploit Primitives

Exploit Primitives

OOB Read

➢ sub_14071E390() returns the src chunk + 8

➢ sub_140603000() is a wrapper of malloc()

Exploit Primitives

OOB Read

➢ 0x20 bytes within src chunk

➢ 0x41F8 to 0x4228, minus CDB[16]

➢ DataLength(U32),

SenseBufferLowAddr(U32),

SGL(FlagsLength(U32), Address64(U64))

➢ Something at the end of the src chunk

Exploit Primitives

OOB Read

➢ 0x10 bytes from the

following chunk

➢ src is 0x4228 chunk

➢ Non-LFH on Windows 10

Exploit Primitives

OOB Write

➢ 0x10 bytes within the dst chunk

➢ 0x138 to 0x158 minus CDB[0x10]

Exploit Primitives

OOB Write

➢ 0x20 bytes into the

following chunk

➢ dst is a 0x158 chunk

➢ May be on LFH

Exploit Primitives

OOB Write

➢ Arbitrary Call

➢ a9 is sub_14080DAA0()

➢ a10 is v16, the 0x158 chunk

Exploit Primitives

OOB Write

➢ Arbitrary Call

➢ Inside sub_14080DAA0()

➢ func_ptr is at v16/RBX + 0x148

➢ second_param is at v16/RBX + 0x150

Exploit Primitives

OOB Write

➢ Arbitrary Call

➢ RIP and RDX are controlled by us

➢ if we overflow func_ptr with 0, call will

not happen

III. The Exploitation Process

Linear vmem

How is the guest physical memory implemented?

➢ On a 64 bit Linux Guest with 4GB memory, the address space of the

physical memory is not 0x00000000 – 0xFFFFFFFF, but is divided

into two parts: 0x00000000 – 0xBFFFFFFF, 0x100000000 –

0x3FFFFFFF

Linear vmem

How is the guest physical memory implemented?

➢ The physical memory of the Guest is mapped

as the .vmem file at 0x7FFF0000 –

0x17FFF0000 linearly

➢ Read/Write a HVA of 0x7FFF0000 + 0x1000

is the same as a GPA of 0x0 + 0x1000

Exploit on Linux

What do we have?

➢ No CFG

➢ RIP and RSI (2nd parameter)

controlled

Exploit on Linux

The one gadget

➢ Tried searching for something like "mov rdi, rsi"

➢ ropper --file vmware-vmx --search "mov rdi, rsi"

➢ One more Arbitrary Call

Exploit on Linux

The one gadget

➢ RSI points to "/usr/bin/gnome-calculator"

Exploit on Windows

Bypass CFG

➢ Without triggering this bug, the original handler function is

sub_14028EC90()

Exploit on Windows

Bypass CFG

➢ I was playing with the Arbitrary Call primitive with the func_ptr

overflowed with 0 when a crash happened since the OOB Write

destroyed some chunks on the heap.

➢ This function looks interesting, if ONLY I could find one that uses

the second parameter like this.

Exploit on Windows

Exploit on Windows

Exploit on Windows

Bypass CFG

➢ It is the original callback function!

➢ With the second parameter already under our control, we

can make another Arbitrary Call

➢ We do not even have to control RIP

➢ Data-Only Exploitation

Exploit on Windows

Bypass CFG

➢ We can point RDX to vmem to

arrange the required elements of

the a2 structure in the Guest

directly

➢ Set a2 to 0x7FFF0000 + 0x1000,

we can write at the physical

address of 0x1000 in the Guest

Exploit on Windows

Bypass CFG

➢ a2[2] points to

KERNEL32!WinExec()

➢ a2[1] points to “calc.exe”

➢ a2[3] is

1(SW_SHOWNORMAL)

➢ a2[2](a2[1], a2[3]);

Exploit on Windows

The features of this kind of function

➢ One of its parameters points to a structure with a function pointer

that will get called and the parameters of the function stored inside

➢ Turn one call into a call “chain”

Live Demonstration: Linux

Live Demonstration: Windows

IV. Takeaways and Q&A

Takeaways

➢ The disk controllers of VMware hypervisors are complex and may

have more bugs;

➢ It pays to read the specifications when doing hypervisor bug

hunting;

➢ When exploiting certain type of bugs, we can put the data in the

guest physical memory directly.

Q&A

64

Credits

➢ Lei SHI, mentor, encouragement and guidance

➢ Guang GONG, @oldfresher, director, freedom of research

https://twitter.com/oldfresher

THANK
YOU!

66

