
gVisor: Modern Linux

Sandboxing Technology

Li Qiang | Senior Security Engineer, AntGroup

24 Aug 2023

1

2

About me
Platform infrastructure security engineer @AntGroup

Security researcher && Developer

All low-level materials: kernel/virtualization/container/security

Speaker of HITB, Ruxcon, Syscan360

3

Agenda
Introduction to sandbox

Linux sandbox mechanisms and solutions

gVisor overview

Build sandbox based gVisor

The future

01 | Introduction to sandbox

4

5

Sandbox-what it is
⚫ A security mechanism for separating running programs

⚫ Mostly used to restrict system resources which untrusted program can access

⚫ A lot of implementation and use cases

⚫ This talk about Linux application sandboxing-process level sandbox

⚫ Sandbox is a very old topic in security area

6

Sandbox-what it restricts
⚫ Process

⚫ File system

⚫ Network access

⚫ Capabilities

⚫ CPU/Memory/IO/Devices

compromised

software

Lateral Movement

Attack the host

Host Host

service

7

Sandbox-use cases
⚫ Attacker controlled code

⚫ Untrust third party program

⚫ Vulnerable parser: it often has been found vulnerabilities

⚫ Malware analysis

8

Sandbox-realworld needs
⚫ Should be used in a lot of place

⚫ Bare mental machine

⚫ Virtual Machine

⚫ Container

⚫ Should defense against lateral movement

⚫ Network security policy

⚫ Should defense against vertical escape

⚫ Kernel isolation

⚫ System security policy

02 | Linux sandbox mechanisms and solutions

9

10

Mechanism: setuid
⚫ File flag about a file

⚫ When set on exec file, the process will have the file owner’s privileges

⚫ Mostly used to do some privileged task by unprivileged user

⚫ Sandbox uses this often because it needs setup sandbox environment

⚫ BTW: setuid root program vuln often leads privilege escalation such as pwnkit

11

Mechanism: ptrace
⚫ ptrace is a linux syscall

⚫ One process can use ptrace to control another process

⚫ ptrace can change process’s memory and control flow

⚫ Mostly used to implement debugger such as gdb

⚫ Sandbox can use ptrace to total control the sandboxed program

⚫ BTW: the famous strace uses ptrace

12

Mechanism: seccomp
⚫ seccomp is a Linux security facility

⚫ seccomp can be used to restrict the syscall the process can trigger

⚫ The kernel has a lot of function which exposed by syscall

⚫ Most process uses only part of the syscall

⚫ Seccomp can be used to reduce attack surface by limiting the syscall

⚫ Sandbox can use seccomp to restrict the sandboxed process’s syscall

⚫ BTW: seccomp is used in a lot of software such as QEMU

13

Mechanism: capabilities
⚫ Capabilities is a Linux mechanism which divides privileges into units

⚫ Traditional permission check gives the root user all permissions

⚫ Capabilities allow process have fine-grained access to kernel resources

⚫ CAP_SYS_ADMIN, CAP_SYS_MODULE, CAP_NET_ADMIN and so on

⚫ Sandbox often needs to restrict the sandboxed process’s capabilities

⚫ BTW: capabilities is used in container ecosystem heavily

14

Mechanism: chroot
⚫ chroot is a Linux syscall

⚫ chroot changes the caller process’s root directory

⚫ The chrooted process can only see the file system begin with the new root

⚫ Sandbox often needs to provide an isolated filesystem view to sandboxed process

⚫ BTW: chroot is used in container ecosystem heavily

15

Mechanism: namespaces
⚫ Namespaces is a Linux mechanism

⚫ Process in different namespaces sees different kernel resources

⚫ PID, NET, MOUNT, UTS, USER, IPC and so on

⚫ Sandbox often uses namespaces to isolate different process

⚫ BTW: Namespaces are a fundamental tech of containers

16

Mechanisms: cgroup
⚫ cgroup is a Linux mechanism

⚫ Which restrict the system resource that process can consume

⚫ CPU, Memory, Disk IO, Network, Devices and so on

⚫ Sandbox often uses this to limit sandboxed process’s system resource usage

⚫ BTW: cgroup are a fundamental tech of containers

17

Mechanisms: Netfilter
⚫ Netfilter is a kernel subsystem

⚫ Netfilter is used to packet filtering and mangling

⚫ Netfilter provides hook points which allow programs to register

⚫ As Packets go through the stack, every registered hook will get a chance to process it

⚫ Sandbox often uses netfilter/iptables to do network isolation

18

Mechanisms: MAC
⚫ Mandatory Access Control

⚫ MAC is based Linux Security Module(LSM) in linux

⚫ Several implementation: SELinux, Smack, AppArmor

⚫ When the process access the kernel resource, security hook in MAC will be called

⚫ Then do the pass/reject decision according to predefined security policy

⚫ The security policy is quite complicated

19

Solution: setuid-sandbox
⚫ A sandbox allow the sandboxed program to drop privileges

⚫ UID isolation(namespace)

⚫ Chroot

⚫ More info: https://code.google.com/archive/p/setuid-sandbox/

20

Solution: systemd
⚫ systemd also provide a lot of sandbox options for services

⚫ So the service process has a limited access to system resource

⚫ ProtectSystem=yes: /usr、/boot read-only

⚫ ProtectDevics=yes: private /dev namespace

⚫ ReadOnlyDirectories= : specify file system access

⚫ PrivateNetwork=yes: no external network access

⚫ systemd uses namespace/seccomp, even BPF-LSM

21

Solution: nsjail
⚫ A light-weight process isolation tool

⚫ Making use of Linux namespaces and seccomp-bpf syscall

⚫ Provides isolation of namespaces/filesystem/resource/

⚫ Isolation of network service/local process

⚫ Share the same kernel with host

⚫ No fine-grained network policy

22

Solution: firejail
⚫ It’s just like nsjail

⚫ Restrict the running environment of untrusted application

⚫ By using Linux namespaces, seccomp-bpf and Linux capabilities

⚫ Can sandbox any type of process: servers, graphical applications

⚫ Share the same kernel with host

⚫ No fine-grained network policy

23

There are a lot of mechanism and solutions
⚫ But all of them share the same kernel

⚫ Almost(if not all) of them lack of network policy

24

So what sandbox do we need?
⚫ Process restriction: defines which process can be launched

⚫ File system access restriction: defines which file can be read/can’t be written to

⚫ Networking access restriction: defines which ip/port/domain can be connected to

⚫ Kernel isolation: don’t share the kernel with host

Summary: We need strong vertical and horizontal isolation

03 | gVisor overview

25

26

What is gVisor
⚫ gVisor is an application kernel

⚫ Written in Go, memory safety

⚫ Implements a lot of Linux syscall interface, Sentry

⚫ A lot of common Linux app can run on it, not 100%

⚫ Implements the OCI spec

Application

Guest OS(Sentry)

Host

27

How gVisor-Defense In Depth
⚫ Sentry: guest kernel, first layer of defense

⚫ Use ptrace/KVM/systrap to intercept syscall

⚫ Gofers: file system access shared

⚫ Sentry/Gofers: both contains several security mechanism

⚫ seccomp/capabilities/chroot/namespace/cgroup,

second layer of defense

Containers Sentry Gofers

Host Linux Kernel

kvm/systrap seccomp seccomp

9P

User

Kernel

28

How gVisor protect the host

Application

Guest OS(Sentry)

Host

⚫ First layer

⚫ Sentry: handle a lot of syscall request

⚫ Memory safety: no buffer overflow, no UAF

⚫ Second layer

⚫ Secomp

⚫ Namespace

⚫ Cgroup

First layer defense

Second layer defense

29

Why not just run sandboxed process in gVisor
⚫ gVisor is used in cloud native/container ecosystem

⚫ It implements OCI spec

⚫ The OCI spec contains several security aspects for container but not all

⚫ The OCI spec has no network-related, it’s in CNI networkpolicy

⚫ Summary: gVisor has the vertical isolation but no horizontal isolation

30

gVisor hack
⚫ gVisor is application kernel written in Go

⚫ It’s easy to customize to meet our needs

⚫ Let’s deny ‘ls’ execution

04 | Build sandbox based gVisor

31

32

Motivation
⚫ We need a sandbox which has vertical isolation and also horizontal isolation

⚫ Traditional solution lack of both

⚫ gVisor implements the defense in depth and has vertical isolation

⚫ But gVisor lack of network policy, horizontal isolation

⚫ We need build it by ourself

33

But wait, can we find one
⚫ Firejail issue

⚫ It seems someone also want using gVisor to be an process sandbox

34

But wait, can we find one
⚫ libkrun: a dynamic library

⚫ That allows program to run in virtual machine

⚫ Like gVisor, add vertical isolation

⚫ But lack of horizontal isolation

application

Guest kernel

libkrun

libkrunfw

runtime

Guest OS

35

vmjail overview
⚫ vmjail is a process-level sandbox based gVisor

⚫ setuid binary to setup sandbox environment

⚫ It has horizontal isolation

⚫ Customize the gVisor

⚫ define network policy

⚫ It has vertical isolation

⚫ Customize the gVisor

⚫ define fs/process policy

sandboxed

process

Sentry

host

kvm/systrap process fs

networking

36

vmjail architecture
⚫ vmjail security policy

⚫ Process/file/networking

⚫ Memory/CPU

⚫ vmjail policy->OCI spec

⚫ runsc: start Sentry and Gofer

⚫ Sentry: enforce security policy

⚫ OCI spec

⚫ Customization

Sandboxed

process

Security

policy

vmjail

runsc

host

OCI Spec

Process/file/networking

restriction

37

OCI introduction
⚫ Open Container Initiative: several spec

⚫ Define how containers can be run

⚫ There are several implementation of OCI

⚫ OCI is often used as low level system in cloud native ecosystem

⚫ OCI has several security aspects for container

⚫ vmjail can leverage some of them

38

vmjail policy -> OCI spec
⚫ vmjail policy contains all of the security policy: file, memory/CPU

⚫ Some of them will be transferred to OCI spec

⚫ Others are implemented in Sentry by ourself

39

File system restriction
⚫ Define the access permission of file system

⚫ Following policy

⚫ rootfs read-only: most of them can’t be write to

⚫ writeablePaths: The dir/file can be write to

⚫ maskedPaths: The dir/file that can’t be read by process

40

File system-OCI
⚫ OCI has all full spec for file system access

⚫ rootfs can be set to readonly: .root.readonly: true

⚫ writeablePaths: set mounts

⚫ maskedPaths: .linux.maskedPaths

41

File system-vmjail
⚫ vmjail can use the OCI spec directly

⚫ vmjail create OCI spec from security policy

42

Network restriction
⚫ Define the network action which can perform

⚫ Following policy:

⚫ No networking at all

⚫ Limit outgoing IP/port

⚫ Limit outgoing domain name

⚫ Limit local listen port

43

Network-CNI
⚫ OCI has no spec for network policy

⚫ Container Network Interface(CNI) define the network policy

⚫ CNI Network policy control the traffic between pods/container

⚫ It is too heavy to use CNI

44

Network-vmjail
⚫ Use gVisor host network stack (--network host)

⚫ Modify the gVisor source code

⚫ When run gVisor, passed it network policy

⚫ When the application trigger network action, check whether it is allowed

vmjail –c security.json wget xxx.com

runsc –network host –security security.json run test

runsc-sandbox

wget xxx.com

45

Process restriction
⚫ In most of the situation only one sandboxed program is executed

⚫ No reverse shell, no attack tool can be run

⚫ Executable full path as policy

⚫ Currently it’s still in development

46

Process-OCI
⚫ OCI has no spec for process restriction

⚫ Though we can set the maskedPaths in OCI spec

⚫ It is blacklist, we need whitelist

47

Process-vmjail
⚫ vmjail policy defines the program list that can be executed

⚫ Modify the gVisor code

⚫ When run gVisor, passed it program policy

⚫ When the not-in whitelist program is executed, deny it

48

CPU/Memory/Devices, etc
⚫ OCI spec has spec for these resource

⚫ vmjail can use the OCI spec directly

⚫ CPU/Memory/Devices/Capabilities

49

Some issues
⚫ Several gVisor issue

⚫ wget can't connect to https websites in host network mode #8156

⚫ statx syscall is not supported before Linux 4.11 #8229

⚫ gVisor upstream don’t support maskedPaths

⚫ gVisor cgroup delete delay

⚫ Run as the user

⚫ getuid, passed to OCI spec

⚫ gVisor require Linux 4.14

⚫ Allow rollback to the origin cmd in unsupport kernel

50

Example
⚫ An isolation kernel

⚫ rootfs read-only

51

Example
⚫ writablePaths

⚫ maskedPaths

52

Example-networking
⚫ Can’t access not-in the whitelist domain

53

Example-networking
⚫ Can access the whitelist domain

54

Example-networking
⚫ No network at all

05 | The futurre

55

56

More runtime
⚫ Currently the gVisor-based sandbox can be perfect from security perspective

⚫ But the world is not all about security

⚫ vmjail is suffered in some performance-critical scenes

⚫ Some task care performance more than security

⚫ Can we add more choices to vmjail?

⚫ runlc, light container, based traditional tech

57

Unify network policy enforce
⚫ We can add a runtime which leverages the traditional mechanism

⚫ But we need to find a way to enforce network policy

⚫ User space network: slirp, passt

⚫ Packet filter in user space network stack

⚫ Like a CNI, but more low level

slirp4netns
vmjail-runlc

vmjail-gvisor
tap

packet

filter

58

gVisor for analysis sandbox
⚫ There is another kind of sandbox which needs to monitor the behavior

⚫ As we can see, the gVisor can inspect everything of process

⚫ Process/Networking/File system behavior

⚫ We can do malware analysis using gVisor

59

The final picture
⚫ vmjail will have two modes

⚫ One for enforce security policy

⚫ VM-based runtime: gVisor, focus security

⚫ namespace/cgroup-based runtime: runlc, focus performance

⚫ Both will have full vertical and horizontal security policy

⚫ One for analysis program

60

Summary
⚫ Currently sandbox lack some of the critical security feature

⚫ gVisor is a full sandbox technology

⚫ gVisor lack of several feature to be a security sandbox

⚫ gVisor can be easily customized to meet the security needs

⚫ We can build a powerful process-level sandbox which has strong vertical and horizontal

isolation based gVisor

THANK YOU!

61

Li Qiang, liq3ea@gmail.com

