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Agenda

● What is Flutter Application? 

● Reverse Engineering Challenges

● Building Dart (AOT) Runtime for Reversing

● Getting Information from Dart Snapshot

● Intro to Dart Internal (ARM64)

● Dumping Objects at Runtime with Frida
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whoami

● Worawit Wangwarunyoo (@sleepya_)
● Security Researcher
● Working for Datafarm Co., Ltd.
● Public exploits and tools on

○ https://github.com/worawit
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What is Flutter Application?
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What is Flutter?

● Flutter is an open source framework by Google
○ For building beautiful, natively compiled, multi-platform 

applications from a single codebase

● Flutter code is powered by Dart platform
● Flutter app developers write code in Dart Language
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Flutter Architectural Overview

6Ref: https://raw.githubusercontent.com/flutter/engine/main/docs/flutter_overview.svg



Scope of This Talk

● Target only Mobile Application (Android, iOS)
● ARM64 architecture only
● Release build only

○ Symbols are stripped
○ Full optimization
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Flutter Mobile App in Installer Package
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Flutter Mobile Application

● Use Dart Ahead-Of-Time (AOT) compiler
○ for producing machine code (in release build)

● The AOT-compiled code still runs inside a Dart VM 
○ Precompiled runtime (a stripped version of Dart VM)

● The code and data are serialized into a binary snapshot
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Dart Snapshot

● Serialized state of the Dart VM at a specific point in its 
execution

● A Dart snapshot is taken just before calling main
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Problems
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Problem 1: Parsing Dart Snapshots

● Universal parser for Dart snapshots cannot be written
○ Dart is constantly evolving
○ The format of snapshots keeps changing

● The snapshot deserialization code is in Dart VM
○ Always included in an installer package
○ Check if the deserializing snapshot is a same version (from hash)

● Known public Dart snapshot parsers
○ Doldrums - https://github.com/rscloura/Doldrums
○ darter - https://github.com/mildsunrise/darter

● Both tools do not work with new Dart versions
○ Updating parser take times
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Problem 2: Analyzing Dart (ABI) Code

● Use general purpose registers as special purpose
○ ARM64 R15 -> Dart VM stack pointer
○ ARM64 R27 -> Object pool pointer
○ …

● Use pool pointer to access object pool
○ No direct references to static data

● Custom calling convention
● Utilize Dart VM functions by calling Dart Stubs

○ Dart stubs are entry points for entering Dart VM from compiled code

● Inline Dart Stubs
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// Register aliases.
const Register TMP = R16;  // Used as scratch register by assembler.
const Register TMP2 = R17;
const Register PP = R27;  // Caches object pool pointer in generated code.
const Register DISPATCH_TABLE_REG = R21;  // Dispatch table register.
const Register CODE_REG = R24;
// Set when calling Dart functions in JIT mode, used by LazyCompileStub.
const Register FUNCTION_REG = R0;
const Register FPREG = FP;          // Frame pointer register.
const Register SPREG = R15;         // Stack pointer register.
const Register IC_DATA_REG = R5;    // ICData/MegamorphicCache register.
const Register ARGS_DESC_REG = R4;  // Arguments descriptor register.
const Register THR = R26;           // Caches current thread in generated code.
const Register CALLEE_SAVED_TEMP = R19;
const Register CALLEE_SAVED_TEMP2 = R20;
const Register HEAP_BITS = R28;  // write_barrier_mask << 32 | heap_base >> 32
const Register NULL_REG = R22;   // Caches NullObject() value.
#define DART_ASSEMBLER_HAS_NULL_REG 1

// ABI for catch-clause entry point.
const Register kExceptionObjectReg = R0;
const Register kStackTraceObjectReg = R1;

Register Usages on ARM64

14From <dart_v3.0.3>/runtime/vm/constants_arm64.h



Previous Public Works

● reFlutter
○ https://github.com/Impact-I/reFlutter
○ https://swarm.ptsecurity.com/fork-bomb-for-flutter/

● flutter-re-demo
○ https://github.com/Guardsquare/flutter-re-demo
○ https://www.guardsquare.com/blog/current-state-and-future-of-

reversing-flutter-apps

● Andre Lipke’s Blog
○ https://blog.tst.sh/reverse-engineering-flutter-apps-part-1/

● Introduction to Dart VM
○ https://mrale.ph/dartvm/
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reFlutter Approach

● Patch the Dart Runtime source code to dump a snapshot 
information while launching an application

○ To avoid writing snapshots parser

● Recompile the flutter engine
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reFlutter Limitation

● Very difficult to develop and debug patched code
○ Hinder the further code analysis development

● Recompiling consumes a lot of resources
○ Disk, CPU
○ Time

● An application must be repackaged and executed
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The Idea

● We only want snapshot deserialization functions
● The functions are only in Dart Runtime

● Can we build Dart SDK as library?
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Building Dart Runtime
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First Attempt: Building Dart SDK (Failed)

● Following the steps in the Dart wiki page
● Building Dart SDK requires Google’s depot tools
● The tools will fetch all dependencies

○ fetch dart

● The final source code size is >10GB
○ Not good if we have to build multiple versions of Dart Runtime

● The built command builds too many binaries
○ Take times and disk space
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Minimize Build to Dart Runtime Only

● Focus on files only in runtime/vm directory
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Minimize Build to Dart Runtime Only

● Create our own CMakeLists.txt
● The defined macros from

○ Generated build files of previous failed attempt

● The source and header files from
○ Parsing the Google’s build script
○ Listing all source file in a subdirectory
○ Adding the missing source files manually (after compiling errors)

● The 3rd party library from
○ Linking error message (only ICU)
○ Use a precompiled one
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The Build Result

● Dart SDK clone directory with git sparse checkout
○ Size <100MB

● Building time
○ Less than 5 minutes on my laptop

● Dart Runtime as static library on Windows
○ Size ~20MB

● The target OS and architecture can be selected from
○ DART_TARGET_OS_ANDROID, DART_TARGET_OS_MACOS_IOS
○ TARGET_ARCH_ARM64, TARGET_ARCH_X64

● No source code patching
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Start fetching and compiling Dart Runtime

Finished compiling Dart Runtime

Dart Runtime Static Library



Getting Information from 
Dart Snapshot
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Using Dart Runtime Internal API

● To access all loaded information in detail
○ Then fill the information into machine code

● Read Dart SDK source code
○ To learn how to use Internal API

● Use only public class methods
○ Their interfaces should not be changed in a new Dart version
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Loading Dart Snapshot
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char* error = NULL;
Dart_InitializeParams init_params = { 0 };
init_params.version = DART_INITIALIZE_PARAMS_CURRENT_VERSION;
init_params.vm_snapshot_data = vm_snapshot_data;
init_params.vm_snapshot_instructions = vm_snapshot_instructions;
init_params.start_kernel_isolate = false;
// other params are no needed if snapshot is not run
error = Dart_Initialize(&init_params);

Dart_IsolateFlags flags;
Dart_IsolateFlagsInitialize(&flags);
flags.is_system_isolate = false;
flags.snapshot_is_dontneed_safe = true;
flags.null_safety = true;
auto isolate = Dart_CreateIsolateGroup(nullptr, nullptr, 
  isolate_snapshot_data, isolate_snapshot_instructions, 
  &flags, nullptr, nullptr, &error);



Getting Classes
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auto table = dart::Isolate::Current()->group()->class_table();
auto& library = dart::Library::Handle();
auto& cls = dart::Class::Handle();

// load from class table
for (intptr_t i = 0; i < table->NumCids(); i++) {
    auto clsPtr = table->At(i);
    if (clsPtr == nullptr)
        continue;

    cls = clsPtr;
    library = cls.library();
    // ...
}



Getting Stubs

● Dart Runtime helper functions
● The symbol names are not in the Dart Snapshot

○ They are in Dart Runtime source code
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#define DO(member, name) \
  ptr = store->member(); \
  code = ptr; \
  ep_addr = code.EntryPoint(); \
  stub = new DartStub(ptr, DartStub::name ## Stub, ep_addr, code.Size(), #name); \
  stubs[ep_addr] = stub;
  OBJECT_STORE_STUB_CODE_LIST(DO);

#define OBJECT_STORE_STUB_CODE_LIST(DO)                                        \
  DO(dispatch_table_null_error_stub, DispatchTableNullError)                   \
  DO(late_initialization_error_stub_with_fpu_regs_stub,                        \
     LateInitializationErrorSharedWithFPURegs)                                 \
  DO(late_initialization_error_stub_without_fpu_regs_stub,                     \
     LateInitializationErrorSharedWithoutFPURegs)                              \
  DO(null_error_stub_with_fpu_regs_stub, NullErrorSharedWithFPURegs)           \

From <dart_v3.0.3>/runtime/vm/object_store.h
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Object Pool (PP)

● Global constant objects
○ Also includes immediates and addresses

● Strings are immutable (constants)
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Dart Thread Offsets

● List of VM-global objects/addresses cached in each Dart 
Thread object

● Many objects are accessed through Dart Thread object
● The names are not in the Dart Snapshot
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#define DEFINE_OFFSET_INIT(type_name, member_name, expr, default_init_value) \
  threadOffsetNames[dart::Thread::member_name##offset()] = #member_name;
  CACHED_CONSTANTS_LIST(DEFINE_OFFSET_INIT);
#undef DEFINE_OFFSET_INIT

#define DEFINE_OFFSET_INIT(name) \
  threadOffsetNames[dart::Thread::name##_entry_point_offset()] = #name;
  RUNTIME_ENTRY_LIST(DEFINE_OFFSET_INIT);
#undef DEFINE_OFFSET_INIT
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Before After



Intro to Dart Internal (ARM64)
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Pointer Compression

● Allocate an aligned 4GB region of address space as heap
○ Only lower 32 bits of object pointer is stored in memory
○ Lower memory usage with smaller pointer
○ Not enabled on iOS because it requires an additional application 

entitlement

● The decompress pointer instruction always be after the 
loading object instruction
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Dart Object Memory Layout (64 bit)
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Object tags

Compressed Ptr

Compressed Ptr

0x00

0x08

0x0c

0x14

Native int

Object class: size, class id, hash

Instance variable (object)

Instance variable (object)

Instance variable (int)



Dart Calling Convention

● Use R15 register as Dart VM Stack Pointer
● All call arguments are stored in Stack
● Store arguments in reversed order from a typical one
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arg 0

arg 1

arg 2

Top of stack

saved LR

saved FP

local var x

local var y

Example for stack frame of function with 3 arguments



Dart Calling with Named Parameters

● Use R4 register as Arguments Descriptor
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arg 3

arg 4

arg 5

saved LR

saved FP

local var x

[0, 0x6, 0x6, 0x2, 

"caseSensitive", 0x3, 

"dotAll", 0x5, 

"multiLine", 0x2, 

"unicode", 0x4, 

Null]

arg 0

arg 1

arg 2

Total arguments

Number of 

positional argument



Calling Dart Stub

● Use selected registers as Stub arguments
● Most of them are defined in constants_<arch>.h

● Some of them is fixed in compiler
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struct InitStaticFieldABI {
  static const Register kFieldReg = R2;
  static const Register kResultReg = R0;
};

struct AllocateObjectABI {
  static const Register kResultReg = R0;
  static const Register kTypeArgumentsReg = R1;

static const Register kTagsReg = R2;
};

struct AllocateClosureABI {
  static const Register kResultReg = AllocateObjectABI::kResultReg;
  static const Register kFunctionReg = R1;

static const Register kContextReg = R2;
  static const Register kScratchReg = R4;
};

From <dart_v3.0.3>/runtime/vm/constants_arm64.h



Dump Object with Frida
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Frida Hooking

● Auto generating script for accessing Dart objects
○ Target application information such as classes
○ Functions for accessing Dart object in memory

● Current support only dumping an Dart object
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Frida script for dumping

Client.post1 argument

Disassembled code from libapp.so
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Conclusion

● Using Dart Runtime is allowed us to get a lot of 
information from a Flutter application

○ All symbol names in a Dart Snapshot
○ Names of fixed value/constants that only used in Runtime code

■ Stub names
■ Thread offset names

● These information make further analysis easier
○ This part requires studying Dart internals

● The Blutter tool will be released at
○ https://github.com/worawit/Blutter
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DEMO
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THANK
YOU!
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