
B(l)utter
Reversing Flutter Application
by using Dart Runtime

Worawit Wangwarunyoo
Security Researcher, Datafarm

1

Agenda

● What is Flutter Application?

● Reverse Engineering Challenges

● Building Dart (AOT) Runtime for Reversing

● Getting Information from Dart Snapshot

● Intro to Dart Internal (ARM64)

● Dumping Objects at Runtime with Frida

2

whoami

● Worawit Wangwarunyoo (@sleepya_)
● Security Researcher
● Working for Datafarm Co., Ltd.
● Public exploits and tools on

○ https://github.com/worawit

3

What is Flutter Application?

4

What is Flutter?

● Flutter is an open source framework by Google
○ For building beautiful, natively compiled, multi-platform

applications from a single codebase

● Flutter code is powered by Dart platform
● Flutter app developers write code in Dart Language

5

Flutter Architectural Overview

6Ref: https://raw.githubusercontent.com/flutter/engine/main/docs/flutter_overview.svg

Scope of This Talk

● Target only Mobile Application (Android, iOS)
● ARM64 architecture only
● Release build only

○ Symbols are stripped
○ Full optimization

7

Flutter Mobile App in Installer Package

8

Embedder

Engine

Framework

App

Dart

C/C++

Android: libapp.so

IOS: App.Framework

Android: libflutter.so

IOS: Flutter.Framework

Flutter Mobile Application

● Use Dart Ahead-Of-Time (AOT) compiler
○ for producing machine code (in release build)

● The AOT-compiled code still runs inside a Dart VM
○ Precompiled runtime (a stripped version of Dart VM)

● The code and data are serialized into a binary snapshot

9

Dart Snapshot

● Serialized state of the Dart VM at a specific point in its
execution

● A Dart snapshot is taken just before calling main

10

Problems

11

Problem 1: Parsing Dart Snapshots

● Universal parser for Dart snapshots cannot be written
○ Dart is constantly evolving
○ The format of snapshots keeps changing

● The snapshot deserialization code is in Dart VM
○ Always included in an installer package
○ Check if the deserializing snapshot is a same version (from hash)

● Known public Dart snapshot parsers
○ Doldrums - https://github.com/rscloura/Doldrums
○ darter - https://github.com/mildsunrise/darter

● Both tools do not work with new Dart versions
○ Updating parser take times

12

Problem 2: Analyzing Dart (ABI) Code

● Use general purpose registers as special purpose
○ ARM64 R15 -> Dart VM stack pointer
○ ARM64 R27 -> Object pool pointer
○ …

● Use pool pointer to access object pool
○ No direct references to static data

● Custom calling convention
● Utilize Dart VM functions by calling Dart Stubs

○ Dart stubs are entry points for entering Dart VM from compiled code

● Inline Dart Stubs

13

// Register aliases.
const Register TMP = R16; // Used as scratch register by assembler.
const Register TMP2 = R17;
const Register PP = R27; // Caches object pool pointer in generated code.
const Register DISPATCH_TABLE_REG = R21; // Dispatch table register.
const Register CODE_REG = R24;
// Set when calling Dart functions in JIT mode, used by LazyCompileStub.
const Register FUNCTION_REG = R0;
const Register FPREG = FP; // Frame pointer register.
const Register SPREG = R15; // Stack pointer register.
const Register IC_DATA_REG = R5; // ICData/MegamorphicCache register.
const Register ARGS_DESC_REG = R4; // Arguments descriptor register.
const Register THR = R26; // Caches current thread in generated code.
const Register CALLEE_SAVED_TEMP = R19;
const Register CALLEE_SAVED_TEMP2 = R20;
const Register HEAP_BITS = R28; // write_barrier_mask << 32 | heap_base >> 32
const Register NULL_REG = R22; // Caches NullObject() value.
#define DART_ASSEMBLER_HAS_NULL_REG 1

// ABI for catch-clause entry point.
const Register kExceptionObjectReg = R0;
const Register kStackTraceObjectReg = R1;

Register Usages on ARM64

14From <dart_v3.0.3>/runtime/vm/constants_arm64.h

Previous Public Works

● reFlutter
○ https://github.com/Impact-I/reFlutter
○ https://swarm.ptsecurity.com/fork-bomb-for-flutter/

● flutter-re-demo
○ https://github.com/Guardsquare/flutter-re-demo
○ https://www.guardsquare.com/blog/current-state-and-future-of-

reversing-flutter-apps

● Andre Lipke’s Blog
○ https://blog.tst.sh/reverse-engineering-flutter-apps-part-1/

● Introduction to Dart VM
○ https://mrale.ph/dartvm/

15

reFlutter Approach

● Patch the Dart Runtime source code to dump a snapshot
information while launching an application

○ To avoid writing snapshots parser

● Recompile the flutter engine

16Embedder

Engine

Framework

App

Dart

C/C++

Android: libapp.so

IOS: App.Framework

Android: libflutter.so

IOS: Flutter.Framework

Patched

reFlutter Limitation

● Very difficult to develop and debug patched code
○ Hinder the further code analysis development

● Recompiling consumes a lot of resources
○ Disk, CPU
○ Time

● An application must be repackaged and executed

17

The Idea

● We only want snapshot deserialization functions
● The functions are only in Dart Runtime

● Can we build Dart SDK as library?

18

Building Dart Runtime

19

First Attempt: Building Dart SDK (Failed)

● Following the steps in the Dart wiki page
● Building Dart SDK requires Google’s depot tools
● The tools will fetch all dependencies

○ fetch dart

● The final source code size is >10GB
○ Not good if we have to build multiple versions of Dart Runtime

● The built command builds too many binaries
○ Take times and disk space

20

Minimize Build to Dart Runtime Only

● Focus on files only in runtime/vm directory

21

Minimize Build to Dart Runtime Only

● Create our own CMakeLists.txt
● The defined macros from

○ Generated build files of previous failed attempt

● The source and header files from
○ Parsing the Google’s build script
○ Listing all source file in a subdirectory
○ Adding the missing source files manually (after compiling errors)

● The 3rd party library from
○ Linking error message (only ICU)
○ Use a precompiled one

22

The Build Result

● Dart SDK clone directory with git sparse checkout
○ Size <100MB

● Building time
○ Less than 5 minutes on my laptop

● Dart Runtime as static library on Windows
○ Size ~20MB

● The target OS and architecture can be selected from
○ DART_TARGET_OS_ANDROID, DART_TARGET_OS_MACOS_IOS
○ TARGET_ARCH_ARM64, TARGET_ARCH_X64

● No source code patching

23

24

Start fetching and compiling Dart Runtime

Finished compiling Dart Runtime

Dart Runtime Static Library

Getting Information from
Dart Snapshot

25

Using Dart Runtime Internal API

● To access all loaded information in detail
○ Then fill the information into machine code

● Read Dart SDK source code
○ To learn how to use Internal API

● Use only public class methods
○ Their interfaces should not be changed in a new Dart version

26

Loading Dart Snapshot

27

char* error = NULL;
Dart_InitializeParams init_params = { 0 };
init_params.version = DART_INITIALIZE_PARAMS_CURRENT_VERSION;
init_params.vm_snapshot_data = vm_snapshot_data;
init_params.vm_snapshot_instructions = vm_snapshot_instructions;
init_params.start_kernel_isolate = false;
// other params are no needed if snapshot is not run
error = Dart_Initialize(&init_params);

Dart_IsolateFlags flags;
Dart_IsolateFlagsInitialize(&flags);
flags.is_system_isolate = false;
flags.snapshot_is_dontneed_safe = true;
flags.null_safety = true;
auto isolate = Dart_CreateIsolateGroup(nullptr, nullptr,
 isolate_snapshot_data, isolate_snapshot_instructions,
 &flags, nullptr, nullptr, &error);

Getting Classes

28

auto table = dart::Isolate::Current()->group()->class_table();
auto& library = dart::Library::Handle();
auto& cls = dart::Class::Handle();

// load from class table
for (intptr_t i = 0; i < table->NumCids(); i++) {
 auto clsPtr = table->At(i);
 if (clsPtr == nullptr)
 continue;

 cls = clsPtr;
 library = cls.library();
 // ...
}

Getting Stubs

● Dart Runtime helper functions
● The symbol names are not in the Dart Snapshot

○ They are in Dart Runtime source code

29

#define DO(member, name) \
 ptr = store->member(); \
 code = ptr; \
 ep_addr = code.EntryPoint(); \
 stub = new DartStub(ptr, DartStub::name ## Stub, ep_addr, code.Size(), #name); \
 stubs[ep_addr] = stub;
 OBJECT_STORE_STUB_CODE_LIST(DO);

#define OBJECT_STORE_STUB_CODE_LIST(DO) \
 DO(dispatch_table_null_error_stub, DispatchTableNullError) \
 DO(late_initialization_error_stub_with_fpu_regs_stub, \
 LateInitializationErrorSharedWithFPURegs) \
 DO(late_initialization_error_stub_without_fpu_regs_stub, \
 LateInitializationErrorSharedWithoutFPURegs) \
 DO(null_error_stub_with_fpu_regs_stub, NullErrorSharedWithFPURegs) \

From <dart_v3.0.3>/runtime/vm/object_store.h

30

Object Pool (PP)

● Global constant objects
○ Also includes immediates and addresses

● Strings are immutable (constants)

31

32

Dart Thread Offsets

● List of VM-global objects/addresses cached in each Dart
Thread object

● Many objects are accessed through Dart Thread object
● The names are not in the Dart Snapshot

33

#define DEFINE_OFFSET_INIT(type_name, member_name, expr, default_init_value) \
 threadOffsetNames[dart::Thread::member_name##offset()] = #member_name;
 CACHED_CONSTANTS_LIST(DEFINE_OFFSET_INIT);
#undef DEFINE_OFFSET_INIT

#define DEFINE_OFFSET_INIT(name) \
 threadOffsetNames[dart::Thread::name##_entry_point_offset()] = #name;
 RUNTIME_ENTRY_LIST(DEFINE_OFFSET_INIT);
#undef DEFINE_OFFSET_INIT

34

35

Before After

Intro to Dart Internal (ARM64)

36

Pointer Compression

● Allocate an aligned 4GB region of address space as heap
○ Only lower 32 bits of object pointer is stored in memory
○ Lower memory usage with smaller pointer
○ Not enabled on iOS because it requires an additional application

entitlement

● The decompress pointer instruction always be after the
loading object instruction

37

Dart Object Memory Layout (64 bit)

38

Object tags

Compressed Ptr

Compressed Ptr

0x00

0x08

0x0c

0x14

Native int

Object class: size, class id, hash

Instance variable (object)

Instance variable (object)

Instance variable (int)

Dart Calling Convention

● Use R15 register as Dart VM Stack Pointer
● All call arguments are stored in Stack
● Store arguments in reversed order from a typical one

39

arg 0

arg 1

arg 2

Top of stack

saved LR

saved FP

local var x

local var y

Example for stack frame of function with 3 arguments

Dart Calling with Named Parameters

● Use R4 register as Arguments Descriptor

40

arg 3

arg 4

arg 5

saved LR

saved FP

local var x

[0, 0x6, 0x6, 0x2,

"caseSensitive", 0x3,

"dotAll", 0x5,

"multiLine", 0x2,

"unicode", 0x4,

Null]

arg 0

arg 1

arg 2

Total arguments

Number of

positional argument

Calling Dart Stub

● Use selected registers as Stub arguments
● Most of them are defined in constants_<arch>.h

● Some of them is fixed in compiler

41

struct InitStaticFieldABI {
 static const Register kFieldReg = R2;
 static const Register kResultReg = R0;
};

struct AllocateObjectABI {
 static const Register kResultReg = R0;
 static const Register kTypeArgumentsReg = R1;

static const Register kTagsReg = R2;
};

struct AllocateClosureABI {
 static const Register kResultReg = AllocateObjectABI::kResultReg;
 static const Register kFunctionReg = R1;

static const Register kContextReg = R2;
 static const Register kScratchReg = R4;
};

From <dart_v3.0.3>/runtime/vm/constants_arm64.h

Dump Object with Frida

42

Frida Hooking

● Auto generating script for accessing Dart objects
○ Target application information such as classes
○ Functions for accessing Dart object in memory

● Current support only dumping an Dart object

43

44

Frida script for dumping

Client.post1 argument

Disassembled code from libapp.so

45

Conclusion

● Using Dart Runtime is allowed us to get a lot of
information from a Flutter application

○ All symbol names in a Dart Snapshot
○ Names of fixed value/constants that only used in Runtime code

■ Stub names
■ Thread offset names

● These information make further analysis easier
○ This part requires studying Dart internals

● The Blutter tool will be released at
○ https://github.com/worawit/Blutter

46

DEMO

47

THANK
YOU!

48

	Slide 1: B(l)utter Reversing Flutter Application by using Dart Runtime
	Slide 2: Agenda
	Slide 3: whoami
	Slide 4: What is Flutter Application?
	Slide 5: What is Flutter?
	Slide 6: Flutter Architectural Overview
	Slide 7: Scope of This Talk
	Slide 8: Flutter Mobile App in Installer Package
	Slide 9: Flutter Mobile Application
	Slide 10: Dart Snapshot
	Slide 11: Problems
	Slide 12: Problem 1: Parsing Dart Snapshots
	Slide 13: Problem 2: Analyzing Dart (ABI) Code
	Slide 14: Register Usages on ARM64
	Slide 15: Previous Public Works
	Slide 16: reFlutter Approach
	Slide 17: reFlutter Limitation
	Slide 18: The Idea
	Slide 19: Building Dart Runtime
	Slide 20: First Attempt: Building Dart SDK (Failed)
	Slide 21: Minimize Build to Dart Runtime Only
	Slide 22: Minimize Build to Dart Runtime Only
	Slide 23: The Build Result
	Slide 24
	Slide 25: Getting Information from Dart Snapshot
	Slide 26: Using Dart Runtime Internal API
	Slide 27: Loading Dart Snapshot
	Slide 28: Getting Classes
	Slide 29: Getting Stubs
	Slide 30
	Slide 31: Object Pool (PP)
	Slide 32
	Slide 33: Dart Thread Offsets
	Slide 34
	Slide 35
	Slide 36: Intro to Dart Internal (ARM64)
	Slide 37: Pointer Compression
	Slide 38: Dart Object Memory Layout (64 bit)
	Slide 39: Dart Calling Convention
	Slide 40: Dart Calling with Named Parameters
	Slide 41: Calling Dart Stub
	Slide 42: Dump Object with Frida
	Slide 43: Frida Hooking
	Slide 44
	Slide 45
	Slide 46: Conclusion
	Slide 47: DEMO
	Slide 48: THANK YOU!

