
Hunting For AWS Cognito Security
Misconfigurations
Yassine Aboukir (@yassineaboukir)

Introduction

Yassine Aboukir (@yassineaboukir)

● Application security consultant
● Pentester at HackerOne
● HackerOne Hacker Advisory Board member
● Security Analyst @ HackerOne (2017 - 2019)
● Bug Bounties (since 2013): HackerOne Top 20,

H1-303 MVH & 1st place.

Introduction to AWS Cognito

With Amazon Cognito, you can add user sign-up and sign-in features and control access to your web

and mobile applications.

Amazon Cognito provides an identity store that scales to millions of users, supports social and

enterprise identity federation (OIDC or SAML 2.0), and offers advanced security features to protect your

consumers and business.

Source: https://aws.amazon.com/cognito/

Introduction to AWS Cognito

Amazon Cognito makes it easier for you to manage user identities, authentication, and permissions.

Source: https://www.ssl2buy.com/wiki/authentication-vs-authorization-whats-the-difference

Introduction to AWS Cognito

Amazon Cognito makes it easier for you to manage user identities, authentication, and permissions. It

consists of two main components:

● User Pools: allow sign-in and sign-up functionality.

● Identity Pools: allow authenticated and unauthenticated users to access AWS resources using

temporary AWS credentials.

Introduction to AWS Cognito

Source: https://aws.amazon.com/blogs/mobile/building-fine-grained-authorization-using-amazon-cognito-user-pools-groups/

In practical words,

API calls to AWS Cognito API endpoints

● Yellow: API calls to user pool / endpoint: cognito-idp.us-west-2.amazonaws.com

● Green: API calls to identity pool / endpoint: cognito-identity.us-west-2.amazonaws.com

In practice,

1. User logs in with username and
password which is then checked
against user pool.

In practical words,

2. The user pool generates and returns 3 JWT
tokens:

- Access token
- ID token
- Refresh token

In practical words, 3. Generate an identity ID.

In practical words, 4. Use identity ID to generate temporary AWS credentials

Unauthorized access to AWS services due to Liberal AWS
Credentials

Guest access is enabled (anyone can request credentials)

Unauthorized access to AWS services due to Liberal AWS
Credentials

1. Try to fetch temporary AWS credentials as unauthenticated guest

To generate the AWS credentials, we need to find Identity Pool ID which is usually hardcoded in the

source code, in a bundled JS file or in HTTP response. Other useful information that you can find:

● Client ID

● User Pool ID

● Region

Identity Pool IDClient IDUser Pool IDRegion

Unauthorized access to AWS services due to Liberal AWS
Credentials

Using Burpsuite, search for a variation of the following keywords in the HTTP history:

Aws_cognito_identity_pool_id

identityPoolId

cognitoIdentityPoolId

userPoolWebClientId

userPoolId

Aws_user_pools_id
REACT_APP_IDENTITY_POOL_ID

These hardcoded IDs are not considered sensitive on their own!

1. Try to fetch temporary AWS credentials as unauthenticated guest

Unauthorized access to AWS services due to Liberal AWS
Credentials

Try content discovery techniques by enumerating and bruteforcing directories and files.

1. Try to fetch temporary AWS credentials as unauthenticated guest

https://portal.example.com/.env

Pool IDRegion

Client ID

https://portal.kudo.co.id/.env

Unauthorized access to AWS services due to Liberal AWS
Credentials

Nuclei template to find
Identity Pool ID.

https://github.com/projectdiscovery/nuclei-templates/

https://github.com/projectdiscovery/nuclei-templates/

Unauthorized access to AWS services due to Liberal AWS
Credentials

Next step is to use the Pool Identity ID to generate an Identity ID.

Use AWS Client (https://github.com/aws/aws-cli) as follows:

$ aws cognito-identity get-id --identity-pool-id <identity-pool-id> --region <region>

1. Try to fetch temporary AWS credentials as unauthenticated guest

Unauthorized access to AWS services due to Liberal AWS
Credentials

Next step is to use the previous Identity ID to generate AWS credentials. Use AWS Cli as follows:

$ aws cognito-identity get-credentials-for-identity --identity-id <identity-id> --region <region>

1. Try to fetch temporary AWS credentials as unauthenticated guest

Unauthorized access to AWS services due to Liberal AWS
Credentials

Now, we can enumerate permissions associated with these credentials using a tool such as:

● Enumerate-iam: https://github.com/andresriancho/enumerate-iam

● Scout Suite: https://github.com/nccgroup/ScoutSuite

$./enumerate-iam.py --access-key <AccessKeyID> --secret-key <SecretKey> --session-token
<SessionToken>

Enumerated permissions

1. Try to fetch temporary AWS credentials as unauthenticated guest

https://github.com/andresriancho/enumerate-iam
https://github.com/nccgroup/ScoutSuite

Unauthorized access to AWS services due to Liberal AWS
Credentials

You could enumerate all sort of permissions that allow unauthenticated user to access AWS services:

● dynamodb.list_backups()

● dynamodb.list_tables()

● lambda.list_functions()

● s3.list_buckets()

● etc.

1. Try to fetch temporary AWS credentials as unauthenticated guest

Unauthorized access to AWS services due to Liberal AWS
Credentials

If the unauthenticated role is explicitly disabled. You’ll will receive similar error:

NotAuthorizedException: Unauthenticated access is not supported for this identity pool.

Unauthorized access to AWS services due to Liberal AWS
Credentials

Guest access is disabled (only authenticated user can request credentials)

Unauthorized access to AWS services due to Liberal AWS
Credentials
2. Try to fetch temporary AWS credentials as authenticated user

Assuming unauthenticated user is disabled and you either can sign up or have access to an authenticated

account. Observe the HTTP traffic upon successful authentication:

ID_token is exchanged for
temporary AWS credentials:

● AccessKeyId
● SecretKey
● SessionToken

Authentication bypass due to enabled Signup API action

Applications not offering user signup and only supporting administrative provision of accounts could be

vulnerable as a result of not disabling signup API action.

This includes admin login portals which implement AWS cognito allowing authentication bypass as a

result.

Authentication bypass due to enabled Signup API action

Self-registration enabled by default when creating a new user pool

Authentication bypass due to enabled Signup API action

We only need the client ID and region to test against the self-registration.

$ aws cognito-idp sign-up --client-id <client-id> --username <email-address> --password <password> --region
<region>

Successful singup

Failed signup

Authentication bypass due to enabled Signup API action

We only need the client ID and region to test against the self-registration.

AWSCognitoIdentityProviderService.SignUp

Authentication bypass due to enabled Signup API action

In case of a successful self-registration, a 6 digits confirmation code will be delivered to the attacker’s
email address.

$ aws cognito-idp confirm-sign-up --client-id <client-id> --username <email-address> --confirmation-code
<confirmation-code> --region <region>

You’ll need to confirm the account next.

Authentication bypass due to enabled Signup API action

You can also directly call the Cognito API endpoint as follows:

AWSCognitoIdentityProviderService.ConfirmSignUp

Attributes are pieces of information that help you identify individual users, such as name, email address,

and phone number. A new user pool has a set of default standard attributes.

Privilege escalation through writable user attributes

You can also add custom attributes to your user pool definition in the AWS Management Console.

Privilege escalation through writable user attributes

Unless set as readable only, the new custom attribute permission is writable by default which allows the user
to update its value.

Privilege escalation through writable user attributes

1. Fetching user attributes

In order to test against this misconfiguration, you need to be authenticated then we’ll fetch the available

user attributes using the generated access token (Check Authorization header).

$ aws cognito-idp get-user --region <region> --access-token <access-token>

Privilege escalation through writable user attributes

1. Fetching user attributes

Privilege escalation through writable user attributes

Privilege escalation through writable user attributes

AWSCognitoIdentityProviderService.GetUser
1. Fetching user attributes

Look out for custom

attributes such as:

custom:isAdmin

custom:userRole

custom:isActive

custom:isApproved

custom:accessLevel

Privilege escalation through writable user attributes

2. Updating user attributes

$ aws cognito-idp update-user-attributes --access-token <access-token> --region <region> --user-attributes
Name="<attribute-name>", Value="<new-value>"

AWSCognitoIdentityProviderService.UpdateUserAttributes

Privilege escalation through writable user attributes

Updating email attribute before verification

There scenarios where the user isn’t allowed to update their email address due to both client and server-side

security controls. However, by leveraging Cognito API, it might also be possible to bypass this restriction.

$ aws cognito-idp update-user-attributes --access-token <access-token> --region <region> --user-attributes
Name="email", Value="<new-email-address>"

This is especially bad when verification isn’t required.

If the email is relied upon for authorization and access control, this will result in horizontal and vertical
privilege escalation.

Updating email attribute before verification

Even with email verification enabled, most applications will update the email attribute value to the
new unverified email address.

Updating email attribute before verification

This is bad because the user will be still be able to login and obtain an authenticated access token using

the unverified email address.

Many application do not necessarily check if email_verified is set to True or False. Therefore, this would

bypass any security controls that relies on email domain for authorization, hence privilege escalation.

Updating email attribute before verification

AWS has introduced a new security configuration to mitigate this issue, so if you have

 Keep original attribute value active when an update is pending explicitly enabled the email attribute will

not be updated to the new email address until it is verified.

This is a new security configuration that was only introduced after June 2022 which means a lot of

applications might still be misconfigured.

Updating email attribute before verification

Updating email attribute before verification

https://hackerone.com/reports/1342088

https://hackerone.com/reports/1342088

1. User victim email address on Flickr app is: max@example.com

2. Attacker attempts to updating their email but it was not possible form the application. However,

the attacker leveraged Cognito API to update their own email to Max@example.com

$ aws cognito-idp update-user-attributes --region us-east-1 --access-token eyJraWQ[...] --user-attributes
Name=email,Value=Max@example.com

Misconfigurations:
● Email attribute is writable so it’s possible to update it via Cognito API.
● Email attribute is case-sensitive which could have been set to insensitive from AWS console.

Updating email attribute before verification

mailto:jack@victim.com
mailto:Jack@victim.com
mailto:Max@example.com

3. Attacker logs in to their account using the newly updated email address Max@domain.com

Misconfigurations:
● email_verified attribute value wasn’t checked if it’s set to True.
● Keep original attribute value active when an update is pending wasn’t enabled.

Updating email attribute before verification

mailto:Jack@victim.com

4. Flickr application normalizes Max@domain.com email to max@domain.com (victim) resulting in
user account takeover (ATO).

Updating email attribute before verification

mailto:Jack@victim.com
mailto:jack@victim.com

User account enumeration via Signup API

User enumeration can be disabled for the user login.

Prevent User Existence Errors setting is turned off:

"An error occurred (UserNotFoundException) when calling the InitiateAuth operation: User does
not exist."

Prevent User Existence Errors setting is turned on:

"An error occurred (NotAuthorizedException) when calling the InitiateAuth operation: Incorrect
username or password."

User account enumeration via Signup API

User enumeration is still possible using Cognito SignUp API.

https://github.com/aws-amplify/amplify-js/issues/6238

User account enumeration via Signup API

https://github.com/aws-amplify/amplify-js/issues/6238

User enumeration via username is still possible using Cognito SignUp API.

$ aws cognito-idp sign-up --client-id <Client_ID> --username admin --password adminpass

An error occurred (UsernameExistsException) when calling the SignUp operation: User already exists

User account enumeration via Signup API

User enumeration via email is still possible using Cognito SignUp API.

$ aws cognito-idp sign-up --client-id <Client_ID> --email yassineaboukir@wearehackerone.com --password
adminpass

An error occurred (UsernameExistsException) when calling the SignUp operation: User already exists

User account enumeration via Signup API

Recommendations for developers

● Remove sensitive details from server responses, including Cognito Identity Pool Id.

● Disable Signup on AWS Cognito if not required.

● Disable unauthenticated role if not required.

● Review IAM policy attached to the authenticated and unauthenticated role to ensure least

privilege access.

● Evaluate all user attributes and disable writing permission if not necessary.

● Remember that the email attribute value may hold an unverified email address.

Thank you!
Reach out on Twitter @yassineaboukir

Or https://yassineaboukir.com

https://twitter.com/yassineaboukir
https://yassineaboukir.com

