Locate VVulnerabilities
of Etheraum Smart
Contracts with Semi-
Rutomated Analysis

Boik Su
Senior security researcher, CyCraft

Boik Su

® Senior Security Researcher @ CyCraft
® CHROOT’s member, a local hacker group in Taiwan
® Specialization

O Web Security / AD Security / Blockchain Security

® Gives talks at

O OWASP Global AppSec / ROOTCON / HITCON

Outline

Intro to Blockchain & Web3
EVM-based Smart Contract Basics
Reverse Engineering & CFG

Cases & Futures

Outline

Intro to Blockchain & Web3
EVM-based Smart Contract Basics
Reverse Engineering & CFG

Cases & Futures

—

— Distributed Ledger Technology (DOLT)

e “Bitcoin”, the first cryptocurrency, was invented in 2008
by an unknown person or group of people using the
name Satoshi Nakamoto

e The term “Blockchain” was later invented due to the
release of the white paper and its fundamental cores,
Peer-to-Peer Network and Consensus Algorithm

e “DLT”"is later named as a category that covers
technologies like Blockchain, having high levels of
transparency, integrity and availability in a decentralized
framework

—

Peer-to-Peer Network
-

® Web 2.0, known as Social Network, focuses on sharing
data and contents under famous entities such as Google,
Meta, Apple, ...

® Web3, known as Blockchain-empowered Network,
focuses on the controls of owned data and identities

Web 2.0 Web3
\ /
el

—

Consensus Algorithm
o g

® The most important component of a blockchain that
ensures the safety of the network

® Participants need to fulfill certain requirements to make
a transaction

® The mainstream ones
O PoW (Proof-of-Work)
O PoS (Proof-of-Stake)
O PoH (Proof-of-History)

—

Consensus Algorithm
o g

® The most important component of a blockchain that
ensures the safety of the network

® Participants need to fulfill certain requirements to make
a transaction

® The mainstream ones
O |PoW (Proof-of-Work)
O PoS (Proof-of-Stake)
O PoH (Proof-of-History)

hash(previous hash , 1390 , root hash) = 0101001111101111

How does “blockchain” work?

Unconfirmed transactions

David — Sandra 5BTC]

7~

[Lisa— Sandra 7 BTC N

[Mary — John 10 BTC

Node

[David — Sandra 5BTC]
Brian — Lisa 3.02BTC /,
Nodes group tre
into bloc
BLOCK #145 BLOCK #146 BLOCK #147 BLOCK #148
Block ID Block ID Block ID Block ID
jwif83nsdke9 nc73s0dke02 vhd02mf03b5h ma83jff874vd
Previous Block Previous Block Previous Block Previous Block
kckj83khsd03 jwif83nsdke9 nc73s0dke02 vhd02mf03b5h
Transactions Transactions Transactions Transactions

>
»

Bitcoin network

BLOCK #149

Block ID
8jj4ofh2mk5bg

Previous Block
ma83jff874vd

Transactions
Lisa — Sandra 7BTC
Mary — John 10 BTC
David —> Sandra 5BTC
..BTC

Blockchain

Time

~ Next block

—

— How does the “network” look like?

—

Generations
-

e 1st Gen: Bitcoin blockchain (Payment System)
e 2nd Gen: Ethereum blockchain (On-chain traditional

finance)

® Next Gen?

O loT (Internet of Things)
o Al (Artificial Intelligence)

—

Generations
-

e 1st Gen: Bitcoin blockchain (Payment System)
e 2nd Gen: Ethereum blockchain (On-chain traditional

finance)

® Next Gen?

O loT (Internet of Things)
o Al (Artificial Intelligence)
O Superconductor (?

13

Outline

Intro to Blockchain & Web3

EVM-based Smart Contract Basics
Reverse Engineering & CFG
Cases & Futures

—

7 Ethereum blockchain & Smart Contract

® Ethereum blockchain introduces a new function called
“Smart Contract”, which is simply a program run on the
blockchain

® Smart contracts can define rules, like a regular contract,
and automatically enforce them via the code

e Dapps (Decentralized Apps) have their backend code
(smart contracts) running on a blockchain like Ethereum
to ensure decentralization and availability

e “DeFi (Decentralized Finance)” then starts thriving

_Short ver. Web 2.0

= Browser
0O

Internet * + * =+ s r ek oaii i inl il

| 1 - A
! ' 1} Web server 1
i Front-end g : Front-end ;
H JavaScript, HTML, CSS H ! JavaScript, HTML, CSS :
i ' : :
H H i H
: I : TR J
! ; I
H Back-end ' posssnpsassssesWhenusememenauesing 5
i Node,js, Python, Java, Go, etc : H H
i : : Smart Smart Smart Smart H
: ! : : S :
‘ —— ‘ e T
i : : Ethereum Virtual Machine H
: : - i
! : ; :
: Database H ! !
| | EEEE®
Weensouanoa s uss G ismasa i T) E Ethereum blockchain 3
T e b

Diagram by Preethi Kasireddy

—

— Ethereaum VM (Virtual Machine)

® Smart contracts run on EVM (Ethereum VM)

® The EVM executes as a stack machine, and each
compiled smart contract bytecode executes as a series of
EVM opcodes like XOR, AND, ADD, SUB, etc

® Each EVM opcode is 1-byte, and therefore, we can have
256 different opcodes at maximum (142 currently)

® Each programmable computation is intrinsically bounded
by fees, which is a specific amount of gas

17

Outline

Intro to Blockchain & Web3
EVM-based Smart Contract Basics
Reverse Engineering & CFG

Cases & Futures

Hacks in Web3

=
<
Internet *

Web server

Front-end

Jav pt, HTML,

Back-end

Node.js, Python, Java, Go, etc

Database

=
<

Internet * *

Ethereum Virtual Machine

Ethereum blockchain

18

Hacks in Web3 (Front-End)

=
O

Internet

5
\Aleh sonvar

Front-end : :
il | e It's Web 2.0 things...

Back-end

Node.js, Python, Java, Go, etc

Database

Ethereum blockchain

Hacks in Web3 (Front-End)

4/18/22

Palisade identifies Wormable Cross-Site Scripting
Vulnerability affecting Rarible’s NFT Marketplace

Curve Finance L 4
@CurveFinance - Follow

Don't use the frontend yet. Investigating! — AIMREWARDS ©
i € 40.1637182ETH
@ samczsun is occasionally shitposting €@ @samczsun ¥ \ $146.98
ERX B
@CurveFinance frontend is compromised, do not use it until further Signing your Request...
notice!)
sssssss
4:40 AM - Aug 10, 2022 @)
649 @ Reply (2 Copylink

Read 70 replies

(={"]

-

g

Hacks in Web3 (Front-End)

4/18/22

Palisade identifies Wormable Cross-Site Scripting
Vulnerability affecting Rarible’s NFT Marketplace g

N

@:XSS (Cross-SiteScripting)

@CurveFinance - Follow

LAIM REWARDS @

Don't use the frontend yet. Investigating! o —a e
= Q 401637182 ETH

€) samczsun is occasionally shitposting & @samczsun WD\, $146.98

ERE N

@CurveFinance frontend is compromised, do not use it until further Signing your Request...

notice!

il $1.34 0.001061 ETH
4:40 AM - Aug 10, 2022 ®
649 Reply (2> Copy link

Read 70 replies

g

= Hacks in Web3 (Front-End)

4/18/22

Palisade identifies Wormable Cross-Site Scripting
Vulnerability affecting Rarible’s NFT Mark

Curve Finance L 4
@CurveFinance - Follow

Don't use the frontend yet. Investigating! —

DS @

€ ¢01637182ETH

Q samczsun is occasionally shitposting €@ @samczsun $146.98

ERE N
@CurveFinance frontend is compromised, do not use it until further D Nﬁug Qaec

notice!
il $1.34 0.001061 ETH

4:40 AM - Aug 10, 2022)

® 649 @ Reply (2 Copylink

(Read 70 replies >

Hacks in Web3 (Front-End)

4/18/22

Palisade identifies Wormable Cross-Site Scripting

NTTT AA ..

Vulnerability affecting Rarible’s

£) Curve Finance s 4
[‘
L\~

Don't use the frontend yet. Investigating!

—
.
=
’:] samczsun is occasionally shitposting & -
A N
@CurveFinance frontend is compromised, do not use it until further Signing your Request...

notice!

=23

Hacks in Web3 (Back-End)

=
O

Internet

.
i Web server

Front-end

JavaScript, HTML, CSS

Front-end

JavaScript, HTM

Back-end

Node Pyton . G, ot - Smart Contract B

Database ‘

Ethereum blockchain

Hacks in Web3 (Back-End)

UNISWAP BUG BOUNTY

Uniswap Labs recently advertised a boosted $3M bounty program for bug reports. To our

knowledge, ours was the only bug report that Uniswap acted upon.

Harmony @ & L 4

@harmonyprotocol - Follow

1/ The Harmony team has identified a theft occurring
this morning on the Horizon bridge amounting to
approx. $100MM. We have begun working with
national authorities and forensic specialists to
identify the culprit and retrieve the stolen funds.

|||mn|

More
7:13 AM - Jun 24, 2022 ©)

@ Wormhole ¥ & L 4

@wormbholecrypto - Follow

The wormhole network was exploited for 120k wETH.

ETH will be added over the next hours to ensure WwETH is
backed 1:1. More details to come shortly.

We are working to get the network back up quickly. Thanks
for your patience.

6:25 AM - Feb 3, 2022 ©)

(=1=]

b

= Hacks in Web3 (Back-End)

UNISWAP BUG BOUNTY

Uniswap Labs recently advertised a boosted|$3M|bounty program for bug reports. To our

knowledge, ours was the only bug report that Uniswap acted upon.

Harmony @ & L 4

@harmonyprotocol - Follow

1/ The Harmony team has identified a theft occurring
this mom\' e Horizon bridge amounting to
approx. [$100MM| We have begun working with
nationa s and forensic specialists to
identify the culprit and retrieve the stolen funds.

More

7:13 AM - Jun24, 2022 ©)

@ Wormhole ¥ & L 4

@wormholecrypto - Follow

The wormhole network was exploited foll 120k wETH

ETH will be added over the next hours to ensure wETH is
backed 1:1. More details to come shortly.

We are working to get the network back up quickly. Thanks
for your patience.

6:25 AM - Feb 3, 2022

®

Hacks in Web3 (Back-End)

Total value stolen in crypto hacks and number of hacks, 2016 - 2022
B Total value hacked == Total number of hacks

$4.0B

c
2
[¢)
=
"
(<]
=
o
>
>
v
c
[
2
c
2
v
o
=
Q
>
Z
O

1 . $0.5B $0.5B

2016 2017 2018 2019 2020 2021 2022

(=3

Reverse Engineering a Contract

® Everything uploaded on the blockchain is consistent,
verifiable, and publicly available

® For transparency and reputation, some projects will
disclose their source code on GitHub, Etherscan, etc

e |f you want, you can always get a copy of a smart
contract bytecode even if it's not open-sourced

® There are no secrets on the blockchain...

=28

White Box Testing

® Which means that we
have the source code

function allowListMint(uint256 quantity, bytes32[] calldata proof)

external
payable
callerIsUser

uint256 price = uint256(saleConfig.mintlistPricd);
require(price != @, "pre sale has not begun yet");
require(

allowlist[msg.sender] < 1,

"You can only mint once during pre-sale."
e
bytes32 leaf = keccak256(abi.encodePacked(msg.sender));
require(_verify(leaf, proof), "Invalid Signature proof supplied.");
require(totalSupply() + quantity <= collectionSize, "reached max supply");
require(price <= msg.value, "Invalid funds provided");
allowlist[msg.sender]++;

_safeMint(msg.sender, quantity);

refundIfOver(price);

(=1=]

White Box Testing

® Which means that we
have the source code

® We can take
advantage of static-
analysis tools to
easily discover flaws

function allowListMint(uint256 quantity, bytes32[] calldata proof)

external
payable
callerIsUser

uint256 price = uint256(saleConfig.mintlistPricd):
require(price != @, "pre sale has not begun yet");
require(

allowlist[msg.sender] < 1,

"You can only mint once during pre-sale."
e
bytes32 leaf = keccak256(abi.encodePacked(msg.sender));
require(_verify(leaf, proof), "Invalid Signature proof supplied.");
require(totalSupply() + quantity <= collectionSize, "reached max supply");
require(price <= msg.value, "Invalid funds provided");
allowlist[msg.senderl]l++;

_safeMint(msg.sender, quantity);

refundIfOver(price);

=]~

White Box Testing

® Which means that we
have the source code

e We can take
advantage of static-
analysis tools to
easily discover flaws

e Can you spot the vuln?

function allowListMint(uint256 quantity, bytes32[] calldata proof)

external
payable
callerIsUser

uint256 price = uint256(saleConfig.mintlistPricd):
require(price != @, "pre sale has not begun yet");
require(

allowlist[msg.sender] < 1,

"You can only mint once during pre-sale."
e
bytes32 leaf = keccak256(abi.encodePacked(msg.sender));
require(_verify(leaf, proof), "Invalid Signature proof supplied.");
require(totalSupply() + quantity <= collectionSize, "reached max supply");
require(price <= msg.value, "Invalid funds provided");
allowlist[msg.senderl]l++;

_safeMint(msg.sender, quantity);

refundIfOver(price);

31

White Box Testing

® Which means that we

have the source code
We can take
advantage of static-
analysis tools to
easily discover flaws
You can mint as many
items as you want by
paying only the price
of one item

function allowListMint(uint256 quantity, bytes32[] calldata proof)

external
payable
callerIsUser

uint256 price = uint256(saleConfig.mintlistPricd):
require(price != @, "pre sale has not begun yet");
require(

allowlist[msg.sender] < 1,

"You can only mint once during pre-sale."
e
bytes32 leaf = keccak256(abi.encodePacked(msg.sender));
require(_verify(leaf, proof), "Invalid Signature proof supplied.");
reauire(totalSuopnlv() + auantitv <= collectionSize. "reached max supply");
require(price <= msg.value, "Invalid funds provided");
allowlist|Imsg.sender|++;

_safeMint(msg.sender, quantity);

refundIfOver(price);

==

White Box Tes

Which mezns that we
Y \ W
have % e code

analysis to¥
easily discove
You can mint as™
items as you want N
paying only the price
of one item

acked(msg.sender));
valid Signature proof supplied.");

avalid funds provided");

» quantity);

v <= collectionSize. "reached max supply");

33

Black Box Testing

® You can try “Replay Attack”, which simply means you

replay the Tx to see if you're able to reproduce the
outcome

Some will also analyze transactions to understand
internal operations

Decoded Actions

> [transfer] =0.159 [ETH], =0x00000
[transfer] =1910 SEKAI], =0x0000007
[transfer] =0.00425 [WETH],
[transfer] =0.16575 [WETH],

Call Trace

v [call] 0x0000007370AF0000aD00Be0EFD
[call] [&] [Isekai Meta: ISEKAI Tok
[staticcall] [®] [Wrapped Ether].b

v [call] [®] [Seaport: Seaport vl.1l
(=0x9d9%af8e

34

Black Box Testing

® You can try “Replay Attack”, which simply means you
replay the Tx to see if you're able to reproduce the
outcome

® Some will also analyze Txs to understand internal
operations

® Or, you can reverse smart contracts, and it will give you
a much clearer view of what smart contracts do actually

35

Disassembly

e No matter what compiled binaries we have, it's a must to
firstly disassemble machine code into disassembly

Assembly view i Bytecode view

PUSH1 e0

PUSH1 02 :
EXP : 0x60e060020a600035...
PUSH1 00 i p

CALLDATALOAD

=]=)

CFG (Control Flow Graph)

Source Code

ot}
b

|

B1

ek WS
[
~ 0

B2 B3

\
/

/
\

B4

l

w=Xx + 2; EXIT

Basic Blocks Flow Graph

37

CFG (Control Flow Graph)

® Why do we need to construct a CFG

1. To have correct executing logics

MOV EAX, $2

MUL EAX, ECX
MOV DWORD [0x402000], EAX

38

CFG (Control Flow Graph)

® Why do we need to construct a CFG

1. To have correct executing logics

MOV EAX, $2

MUL EAX, ECX
MOV DWORD [0x402000], EAX

39

CFG (Control Flow Graph)

® Why do we need to construct a CFG

1. To have correct executing logics

EAX, $2
EAX, ECX
DWORD [0x402000], EAX

40

CFG (Control Flow Graph)

® Why do we need to construct a CFG

1. To have correct executing logics

MOV EAX, $2
MUL EAX, ECX
MOV DWORD [0x402000], EAX

41

CFG (Control Flow Graph)

® Why do we need to construct a CFG

1. To have correct executing logics

EAX, $3
EBX, $0
L2

EAX, $2
EAX, ECX
DWORD [0x402000], EAX

42

CFG (Control Flow Graph)

® Why do we need to construct a CFG

1. To have correct executing logics

EAX, $3
EBX, $0
L2

EAX, $2
EAX, ECX
DWORD [0x402000], EAX

43

CFG (Control Flow Graph)

® Why do we need to construct a CFG

1. To have correct executing logics

EAX, $3
EBX, $0
L2

EAX, $2

EAX, ECX
DWORD [0x402000], EAX

44

CFG (Control Flow Graph)

® Why do we need to construct a CFG

1. To have correct executing logics

2. To eliminate loops

Control flow graph

BLOCK 1
0c61: temp5_14 = 66;

BLOCK 2
0c77: if (temp5_14 < 98);

BLOCK 3
0c7d: temp5_14 = temp5_14 + 16;
0ca0: jumpto(0c77);

BLOCK 4
Oca2: if (temp5_14 > 4);

BLOCK 5
Oca8: temp5_14 = temp5_14 - 24;
Occb: jumpto(Oca2);

BLOCK 6
Occd: jumpto(0c77);

Source Code

Basic Blocks

Bz/) \Ba
N

|

EXIT

Flow Graph

45

CFG (Control Flow Graph)

® Why do we need to construct a CFG

1. To have correct executing logics

2. To eliminate loops

Control flow graph

BLOCK 1
0c61: temp5_14 = 66;

BLOCK 3
0c7d: temp5_14 = temp5_14 + 16;
0ca0: jumpto(0c77);

BLOCK 4
Oca2: if (temp5_14 > 4);

BLOCK 5
Oca8: temp5_14 = temp5_14 - 24;
Occb: jumpto(Oca2);

BLOCK 6
Occd: jumpto(0c77);

Source Code

Basic Blocks

Bz/) \Ba
N

|

EXIT

Flow Graph

45

CFG (Control Flow Graph)

® Why do we need to construct a CFG
1. To have correct executing logics
2. To eliminate loops

Control flow graph

BLOCK 1
0c61: temp5_14 =

BLOCK 3
0c7d: temp5_14 = temp5_14 + 16;
0ca0: jumpto(0c77);

BLOCK .

Oca2: if (temp5_14 > 4);

BLOCK 5
Oca8: temp5_14 = temp5_14 - 24;
Occb: jumpto(Oca2);

w=x+ z; w=x+z; EXIT

Source Code Basic Blocks Flow Graph

Loop 1. Header B2, Tail B3 (inner loop 1)
Loop 2. Header B4, Tail B5 (inner loop 2)
Loop 3. Header B2, Body B4 Tail B6 (outter most loop)

CFG (Control Flow Graph)

® Why do we need to construct a CFG
1. To have correct executing logics
2. To eliminate loops
3. To transform into SSA form and lift to a higher-level abstraction

+ Yy
return x return x1

48

CFG (Control Flow Graph)

e Why do we need to construct a CFG
1. To have correct executing logics cec ' Flow Graph
2. To eliminate loops
3. To transform into SSA form and lift to a higher-level abstraction

e Okay, then how do we get our hands dirty in making a
CFG?

® To make it easy, intermediate-language-based analysis
could make it easy for us (BNIL, P-Code, Microcode, AlL)

49

CFG (Control Flow Graph)

0e push (0x43050 b)

1 @ 00000021 push(pop == 0)

2 @ 00000022 push(0x45)

3 @ 00000024 temp®.32 = pop

4 @ 00000024 temp0.32 = 0x45

5 @ 00000024 jump(temp®.32 => 6 @ 0x46)

6 @ 00000046 push(0x2c20776f726c640a)
7 @ 00000054 push(0)
8 @ 00PEOOE55 temp0.32 = pop
9 @ 000055 tempO.32 = 0
10 @ 00000055 templ.32 = pop
11 @ 00000055 templ.32 = 0x2c20776f726c640a
12 @ 00000055 [temp®d.32].32 = templ.32
13 @ 00000056 push(Oxc)
14 @ 00000058 push(0x13)
15 @ 0000005a <return> jump(pop)
00000025 00 00 00-00 00 20 00 O1 0O 00 00-00 00 00 00 00 00 00 b9-47 00 43 05 b2 O0d cd 80 ceiieiieiinnnn GoCooo00

00000040 34 0d 93 cd 80 4....

CFG from Binary Ninja

® To guide BN to construct a CFG from an unknown
architecture, we firstly need to convert the machine
code to the disassembly

EVM Playground GRAYGLACIER Bytecode B Current: 3 Total: 21000 c o
7454c4601000000000000000000430502000300120043051a00430504000000eb1560455600 [00] PUSH32 454c46010000000000000000004305020003001a0043051a¢
200001 b947004305b20dcd80340d93cd805b6C68656C6CET

2c207761726c640a3d52600c6013f3

00000000 int256_t _dispatcher()
A This function has been analyzed with basic analysis only. Enable full analysis of this function.

00000000 7f454c4601000000.. PUSH32 #454c4601 430502000300120043051200430504000000eb
00000021 15 ISZERO
00000022 6045 PUSH1 2

00000024 56 JUMP 51

CFG from Binary Ninja

e Secondly, we need to tell BN when to branch out, and
therefore, BN will construct the CFG for us

=1=

CFG from Binary Ninja

e Secondly, we need to tell BN when to branch out, and

therefore, BN will construct the CFG for us

O Having said that, branches information are sometimes hard to be
deduced

53

CFG from Binary Ninja

e Secondly, we need to tell BN when to branch out, and

therefore, BN will construct the CFG for us

O Having said that, branches information are sometimes hard to be
deduced

O VSA (Value Set Analysis) is a static analysis approach that finds an
over-approximation of the values that a location could take at a
given program point

O This can be used to understand the possible targets of indirect
jumps, or the possible targets of memory / register write
operations

54

CFG from Binary Ninja

e Secondly, we need to tell BN when to branch out, and

therefore, BN will construct the CFG for us

O Having said that, branches information are sometimes hard to be
deduced

O VSA (Value Set Analysis) is a static analysis approach that finds an
over-approximation of the values that a location could take at a
given program point

O This can be used to understand the possible targets of indirect
jumps, or the possible targets of memory / register write
operations

o Though it suffers from a lack of accuracy, it's sound

=1-]

CFG from Binary Ninja

e Secondly, we need to tell BN when to branch out, and

therefore, BN will construct the CFG for us
O Due to the introduction of the “Gas”, we can simulate every
execution steps of smart contracts
O We set an upper bound of the remaining amount of the gas, there
will be no infinite steps to follow, or issues like DoS (Denial of

Service)

56

CFG from Binary Ninja

e Secondly, we need to tell BN when to branch out, and

therefore, BN will construct the CFG for us

O Due to the introduction of the “Gas”, we can simulate every
execution steps of smart contracts

O We set an upper bound of the remaining amount of the gas, there
will be no infinite steps to follow, or issues like DoS (Denial of
Service)

O We can now get accurate values that a location could take at a
given program point of stacks / memories / and built-in functions

51

CFG from Binary Ninja

Thanks to

function compute_CFG() {
function getBranch(instruction, stack) {
const branch = {
instruction,
nextPc: -1,
trueBranch: parselInt(stack[@], 16),
falseBranch: instruction.pc + 1,

runState: {
rawMemory: undefined,
rawStack: undefined,

}

I

if (instruction.name === 'JUMPI' && stack.length >= 2) {
branch.nextPc = (stack[1] > @) ? branch.falseBranch : branch.trueBranch;
return branch;

}

if (instruction.name === 'JUMP' && stack.length >= 1) {

if (this.jumpTable.hasOwnProperty(instruction.pc)) {
this.jumpTable[instruction.pcl.instructions.push(branch.instruction);
this.jumpTable[instruction.pcl.trueBranches.push(branch.trueBranch);

} else {
this.jumpTable[instruction.pc]l = { instructions: [instruction], trueBranches: [branch.trueBranch] };

https://github.com/ethereumjs/ethereumjs-monorepo

CFG from Binary Ninja

[24] JUMP

STACK
)

null,
null,
{
"instructions": [
{
“pC": 36,
"name'": "“JUMP"
}

]

"trueBranches": [
69
]

}

12

=1=)

SR

CFG from Binary Ninja

// Now, we get the interpreter
this.interpreter = new Interpreter((await this.startExecution(value, data)).interpreter);

// start!

this.round += 1;
this.interpreter.reset(this.gasLimit);
await this.interpreter.run();

bb.walked = true;
while (grey.length) {
const branch = grey_shift(); // get the branch that won't follow this time
const branch = getBranch.call(this, this.instructions[pcl], stack);
th]_'s"_”ound =1) o if (branch) {
this.interpreter.reset(this.gasLimit); branch.runState.rawMemory = Buffer.from(this.interpreter._interpreter._runState.memory._store);
await this.interpreter.run(branch); branch. runState.rawStack = Array.from(this.interpreter._interpreter._runState.stack._store);
branch. runState. rawStack. pop() ;
branch. runState. rawStack.pop() ;
grey.unshift(branch);

=1"]

CFG from Binary Ninja

if (this.instructions[pc].name === 'MSTORE') {
this.mStores[pc] = [stack[@], stack[1]];

if (this.instructions([pc].name === 'RETURNDATASIZE') {
this.returnDataSizes[pc] = bigIntToHex(this.interpreter.getReturnDataSize());

const funcPc = (bb.funcSig) ? ((branch) ? branch.trueBranch : parseInt(stack([0], 16)) :

// if we just found a possible function signature, we label the function
if (funcPc) {
this.add_function({ pc: funcPc, name: bb.funcSig });

nutt,

null,

null,

null,

null,

[
"oxo",
"Ox68656c6c6T2c20776f726c640a"

null; null,
null,
null,
null,
null,
“0X0“

B1

CFG from Binary Ninja

e Finally, we give BN these pieces of information via its
APIs

O get_instruction_text
m Alist of InstructionTextToken objects for the instruction at

the given virtual address with data

o get_instruction_info
m An InstructionInfo object for the instruction at the given

virtual address with data

o get_instruction_low_level_il
m Appends LowLevellLExpr objects to the il variable for the

instruction at the given virtual address with data

=1=]

CFG From Binary

(=) BINARY

inja

Recent

1: /Users/boik/Documents/blockchain/eth/contracts/elf.evm

2: /Users/boik/Documents/blockchain/eth/contracts/0xa01 9c785322b921a84d086502da0d0dbdb993f@m
3: /Users/boik/Documents/blockchain/eth/contracts/0x253ef258563E146f685e60219DA56a6b75178E19.evm
4: /Users/boik/Documents/blockchain/eth/contracts/OxE7145dd6287AE53326347f3A6694fCf2954bcD8A.evm
5: /Users/boik/Documents/blockchain/eth/contracts/0x1278fb63b150e1c9cc478824e589045729321c54.evm
6: /Users/boik/Documents/blockchain/eth/contracts/0x61EB5a27E5f79d182fAFA702c509e017c48821Ed.evm
7: /Applications/Mimestream.app/Contents/MacOS/Mimestream

8: /Users/boik/Documents/blockchain/eth/contracts/Ox4d5ad9198f71f23bd002ef8445a1a8cf2932c744.evm

9: /Users/boik/Documents/blockchain/eth/contracts/0x76E2cFc1 FSFa8F6a5b3fC4c8F4788F0116861F9B.evm
10: /Users/boik/Documents/blockchain/eth/contracts/0x037520c021706e73aa54d81c14808343962770a1.evm

Open... Open an existing file.
Options... = Open an existing file with custom options.
New Create a new binary file.

Triace Onen filal<) far Aliick analucic in the Triace Siimmary view

The Bytes Must Flow!
Binary Ninja 3.3 (Arrakis) is now available.

You may have noticed that we've introduced a new set of codenames for upcoming releases
based on an alphabetical list of famous Sci-Fi/Fantasy planets. Our first release in this theme is
named after the famous desert planet from Dune, Arrakis.

So what spicy goodies are in this release?

©Decompiler Improvements
©Parameter Rejection
olmproved Objective-C Support
©Automatic Outlining

©Debugger

oType Interactions
oCreate Array Dialog
olmport / Export Header Files
©Enumeration Dialog

©More Windows Improvements

63

64

Outline

Intro to Blockchain & Web3
EVM-based Smart Contract Basics
Reverse Engineering & CFG

Cases & Futures

Cases 8 Futures
-

® SAG? from DEF CON 2018 Quals

O It gives us a proxy contract

contract SagProxy {
event PrizeRequest(bytes32 msgHash, uint8 v, bytes32 r, bytes32 s);
event PrizeReady(address winner, bytes prize);

Sag private sag;

address private owner;

https://gist.github.com/gaasedelen/d525e4b90a1702e8bc98b7f148f48daa

Cases 8 Futures

® SAG? from DEF CON 2018 Quals
O It gives us a proxy contract to interact with the private contract
behind

contract SagProxy {

event PrizeRequest(bytes32 msgHash, uint8 v, bytes32 r, bytes32 s);
event PrizeReady(address winner, bytes prize);

Sag private sag;

address private owner;

YovuotCOUDUUVYIUDUIOVYIYUIUYIYOU4UYI 1OUDYULYOL1Y1D01LYUD1YUD/0UvuuoL
58b0f492ac22be@13a619afc0486aaad33dad38d928098dabe8657:
260200183600019166000191681526020018260001916600019168:
05b9493505050505600a165627a7a72305820563788b2b3c0a02891

Ll Ll d14a019¢c785322b921a84d086502dadd0dbdb993fba

https://gist.github.com/gaasedelen/d525e4b90a1702e8bc98b7f148f48daa

Cases 8 Futures
-

® SAG? from DEF CON 2018 Quals

O It gives us a proxy contract to interact with the private contract
behind
o All we know is to pass the function: gamble(guess, seed)

function gamble(uint256 guess, uint256 seed) public
{
sag.gamble(guess, seed);

}

https://gist.github.com/gaasedelen/d525e4b90a1702e8bc98b7f148f48daa

-

Cases 8 Futures

® SAG? from DEF CON 2018 Quals

o

It gives us a proxy contract to interact with the private contract

behind
All we know is to pass the function: gamble(guess, seed)

Then, we request the prize

function requestPrize(bytes32 msgHash, uint8 v, bytes32 r, bytes32 s) public

returns (bool is_winner)

if (ecrecover(msgHash, v, r, s) == msg.sender && sag.isWinner(msg.sender)) {
emit PrizeRequest(msgHash, v, r, s);
return true;

}

return false;

https://gist.github.com/gaasedelen/d525e4b90a1702e8bc98b7f148f48daa

-

Cases 8 Futures

® SAG? from DEF CON 2018 Quals

o

0]

It gives us a proxy contract to interact with the private contract
behind

All we know is to pass the function: gamble(guess, seed)

Then, we request the prize

The Sag contract isn’t published and verified, so we reverse it

https://gist.github.com/gaasedelen/d525e4b90a1702e8bc98b7f148f48daa
https://ethervm.io/decompile/ropsten/0xa019c785322b921a84d086502da0d0dbdb993fba

Cases 8 Futures

New Tab X

: /Users/boik/Documents/blockchain/eth/contracts/0xa019c785322b921a84d086502da0d0dbdb993fba.evm
: /Users/boik/Documents/blockchain/eth/contracts/elf.evm
/Users/boik/Documents/blockchain/eth/contracts/0x253ef258563E146f685e60219DA56a6b75178E19.evm
/Users/boik/Documents/blockchain/eth/contracts/OxE7145dd6287AE53326347f3A6694fCf2954bcD8A.evm
/Users/boik/Documents/blockchain/eth/contracts/0x1278fb63b150e1c9cc478824e589045729321c54.evm
/Users/boik/Documents/blockchain/eth/contracts/0x61EB5a27E5f79d182fAFA702c509e017c48821Ed.evm
/Applications/Mimestream.app/Contents/MacOS/Mimestream

: /Users/boik/Documents/blockchain/eth/contracts/Ox4d5ad9198f71f23bd002ef8445a1a8cf2932c744.evm

: /Users/boik/Documents/blockchain/eth/contracts/0x76E2cFc1FSFa8F6aSb3fC4c8F4788F0116861F9B.evm

SDEH00SI SO UE e N

10: /Users/boik/Documents/blockchain/eth/contracts/0x037520c021706e73aa54d81c14808343962770a1.evm

Open... Open an existing file.

Options... Open an existing file with custom optio

Create a new binary file.

Onen file(s) for auick analvsis in the Triage Summarv view.

-

Cases 8 Futures

® To-dos in the future
O Make it more “smart-contract-like” in decompilation, not c-like
O Have a plugin like IDA F.L.I.R.T. Technology
m Fast Library Identification and Recognition Technology
O Best-effort to decode the 4-byte signatures

—

References
S

® REVERSE ENGINEERING A CONTRACT

® Decompiler - how to structure loops

® (CS153: Compilers Lecture 23: Static Single Assignment
Form

® crytic/ethersplay

https://ethereum.org/en/developers/tutorials/reverse-engineering-a-contract/
https://stackoverflow.com/questions/27160506/decompiler-how-to-structure-loops
https://groups.seas.harvard.edu/courses/cs153/2018fa/lectures/Lec23-SSA.pdf
https://groups.seas.harvard.edu/courses/cs153/2018fa/lectures/Lec23-SSA.pdf
https://github.com/crytic/ethersplay

TH H N K EE\E/SETIDNS?
YOou!

mailto:boik.su@cycarrier.com

