
Locate Vulnerabilities 
of Ethereum Smart 
Contracts with Semi-
Automated Analysis

Boik Su
Senior security researcher, CyCraft

1



Boik Su

● Senior Security Researcher @ CyCraft

● CHROOT’s member, a local hacker group in Taiwan

● Specialization

○ Web Security / AD Security / Blockchain Security

● Gives talks at

○ OWASP Global AppSec / ROOTCON / HITCON

2



Outline

3

● Intro to Blockchain & Web3
● EVM-based Smart Contract Basics
● Reverse Engineering & CFG
● Cases & Futures



Outline

4

● Intro to Blockchain & Web3
● EVM-based Smart Contract Basics
● Reverse Engineering & CFG
● Cases & Futures



Distributed Ledger Technology (DLT)

● “Bitcoin”, the first cryptocurrency, was invented in 2008 
by an unknown person or group of people using the 
name Satoshi Nakamoto

● The term “Blockchain” was later invented due to the 
release of the white paper and its fundamental cores, 
Peer-to-Peer Network and Consensus Algorithm

● “DLT” is later named as a category that covers 
technologies like Blockchain, having high levels of 
transparency, integrity and availability in a decentralized 
framework

5



Peer-to-Peer Network

● Web 2.0, known as Social Network, focuses on sharing 
data and contents under famous entities such as Google, 
Meta, Apple, …

● Web3, known as Blockchain-empowered Network, 
focuses on the controls of owned data and identities

6

Web 2.0 Web3



Consensus Algorithm

● The most important component of a blockchain that 
ensures the safety of the network

● Participants need to fulfill certain requirements to make 
a transaction

● The mainstream ones
○ PoW (Proof-of-Work)
○ PoS (Proof-of-Stake)
○ PoH (Proof-of-History)

7



Consensus Algorithm

● The most important component of a blockchain that 
ensures the safety of the network

● Participants need to fulfill certain requirements to make 
a transaction

● The mainstream ones
○ PoW (Proof-of-Work)
○ PoS (Proof-of-Stake)
○ PoH (Proof-of-History)

8



How does “blockchain” work?

9



How does the “network” look like?

10



Generations

● 1st Gen: Bitcoin blockchain (Payment System)
● 2nd Gen: Ethereum blockchain (On-chain traditional 

finance)
● Next Gen?

○ IoT (Internet of Things)
○ AI (Artificial Intelligence)

11



Generations

● 1st Gen: Bitcoin blockchain (Payment System)
● 2nd Gen: Ethereum blockchain (On-chain traditional 

finance)
● Next Gen?

○ IoT (Internet of Things)
○ AI (Artificial Intelligence)
○ Superconductor (?

12



Outline

13

● Intro to Blockchain & Web3
● EVM-based Smart Contract Basics
● Reverse Engineering & CFG
● Cases & Futures



Ethereum blockchain & Smart Contract

● Ethereum blockchain introduces a new function called 
“Smart Contract”, which is simply a program run on the 
blockchain

● Smart contracts can define rules, like a regular contract, 
and automatically enforce them via the code

● Dapps (Decentralized Apps) have their backend code 
(smart contracts) running on a blockchain like Ethereum 
to ensure decentralization and availability

● “DeFi (Decentralized Finance)” then starts thriving

14



Short ver.

15

Diagram by Preethi Kasireddy



Ethereum VM (Virtual Machine)

● Smart contracts run on EVM (Ethereum VM)
● The EVM executes as a stack machine, and each 

compiled smart contract bytecode executes as a series of 
EVM opcodes like XOR, AND, ADD, SUB, etc

● Each EVM opcode is 1-byte, and therefore, we can have 
256 different opcodes at maximum (142 currently)

● Each programmable computation is intrinsically bounded 
by fees, which is a specific amount of gas

16



Outline

17

● Intro to Blockchain & Web3
● EVM-based Smart Contract Basics
● Reverse Engineering & CFG
● Cases & Futures



Hacks in Web3

18



Hacks in Web3 (Front-End)

19

It’s Web 2.0 things…



Hacks in Web3 (Front-End)

20



Hacks in Web3 (Front-End)

21

XSS (Cross-Site Scripting)



Hacks in Web3 (Front-End)

22

DNS Cache Spoofing



Hacks in Web3 (Front-End)

23

UI Spoofing



Hacks in Web3 (Back-End)

24

Smart Contract 📜



Hacks in Web3 (Back-End)

25



Hacks in Web3 (Back-End)

26



Hacks in Web3 (Back-End)

27



Reverse Engineering a Contract

● Everything uploaded on the blockchain is consistent, 
verifiable, and publicly available

● For transparency and reputation, some projects will 
disclose their source code on GitHub, Etherscan, etc

● If you want, you can always get a copy of a smart 
contract bytecode even if it’s not open-sourced

● There are no secrets on the blockchain…

28



White Box Testing

● Which means that we 
have the source code

29



White Box Testing

● Which means that we 
have the source code

● We can take 
advantage of static-
analysis tools to 
easily discover flaws

30



White Box Testing

● Which means that we 
have the source code

● We can take 
advantage of static-
analysis tools to 
easily discover flaws

● Can you spot the vuln?

31



White Box Testing

● Which means that we 
have the source code

● We can take 
advantage of static-
analysis tools to 
easily discover flaws

● You can mint as many 
items as you want by 
paying only the price 
of one item

32



White Box Testing

● Which means that we 
have the source code

● We can take 
advantage of static-
analysis tools to 
easily discover flaws

● You can mint as many 
items as you want by 
paying only the price 
of one item

33



Black Box Testing

● You can try “Replay Attack”, which simply means you 
replay the Tx to see if you’re able to reproduce the 
outcome

● Some will also analyze transactions to understand 
internal operations

34



Black Box Testing

● You can try “Replay Attack”, which simply means you 
replay the Tx to see if you’re able to reproduce the 
outcome

● Some will also analyze Txs to understand internal 
operations

● Or, you can reverse smart contracts, and it will give you 
a much clearer view of what smart contracts do actually

35



Disassembly

● No matter what compiled binaries we have, it’s a must to 
firstly disassemble machine code into disassembly

36



CFG (Control Flow Graph)

37



● Why do we need to construct a CFG
1. To have correct executing logics

CFG (Control Flow Graph)

38



● Why do we need to construct a CFG
1. To have correct executing logics

CFG (Control Flow Graph)

39



● Why do we need to construct a CFG
1. To have correct executing logics

CFG (Control Flow Graph)

40

= ECX * EAX
= ECX * 2



● Why do we need to construct a CFG
1. To have correct executing logics

CFG (Control Flow Graph)

41

= ECX * EAX
= ECX * 2



● Why do we need to construct a CFG
1. To have correct executing logics

CFG (Control Flow Graph)

42



● Why do we need to construct a CFG
1. To have correct executing logics

CFG (Control Flow Graph)

43



● Why do we need to construct a CFG
1. To have correct executing logics

CFG (Control Flow Graph)

44

= ECX * EAX
= ECX * (EAX == 0) ? 2 : 3



● Why do we need to construct a CFG
1. To have correct executing logics
2. To eliminate loops

CFG (Control Flow Graph)

45



● Why do we need to construct a CFG
1. To have correct executing logics
2. To eliminate loops

CFG (Control Flow Graph)

46



● Why do we need to construct a CFG
1. To have correct executing logics
2. To eliminate loops

CFG (Control Flow Graph)

47



● Why do we need to construct a CFG
1. To have correct executing logics
2. To eliminate loops
3. To transform into SSA form and lift to a higher-level abstraction

CFG (Control Flow Graph)

48



● Why do we need to construct a CFG
1. To have correct executing logics
2. To eliminate loops
3. To transform into SSA form and lift to a higher-level abstraction

● Okay, then how do we get our hands dirty in making a 
CFG?

● To make it easy, intermediate-language-based analysis
could make it easy for us (BNIL, P-Code, Microcode, AIL)

CFG (Control Flow Graph)

49



CFG (Control Flow Graph)

50



● To guide BN to construct a CFG from an unknown 
architecture, we firstly need to convert the machine 
code to the disassembly

CFG from Binary Ninja

51



● Secondly, we need to tell BN when to branch out, and 
therefore, BN will construct the CFG for us

CFG from Binary Ninja

52



● Secondly, we need to tell BN when to branch out, and 
therefore, BN will construct the CFG for us

○ Having said that, branches information are sometimes hard to be 
deduced

CFG from Binary Ninja

53



● Secondly, we need to tell BN when to branch out, and 
therefore, BN will construct the CFG for us

○ Having said that, branches information are sometimes hard to be 
deduced

○ VSA (Value Set Analysis) is a static analysis approach that finds an 
over-approximation of the values that a location could take at a 
given program point

○ This can be used to understand the possible targets of indirect 
jumps, or the possible targets of memory / register write 
operations

CFG from Binary Ninja

54



● Secondly, we need to tell BN when to branch out, and 
therefore, BN will construct the CFG for us

○ Having said that, branches information are sometimes hard to be 
deduced

○ VSA (Value Set Analysis) is a static analysis approach that finds an 
over-approximation of the values that a location could take at a 
given program point

○ This can be used to understand the possible targets of indirect 
jumps, or the possible targets of memory / register write 
operations

○ Though it suffers from a lack of accuracy, it’s sound

CFG from Binary Ninja

55



● Secondly, we need to tell BN when to branch out, and 
therefore, BN will construct the CFG for us

○ Due to the introduction of the “Gas”, we can simulate every 
execution steps of smart contracts

○ We set an upper bound of the remaining amount of the gas, there 
will be no infinite steps to follow, or issues like DoS (Denial of 
Service)

CFG from Binary Ninja

56



● Secondly, we need to tell BN when to branch out, and 
therefore, BN will construct the CFG for us

○ Due to the introduction of the “Gas”, we can simulate every 
execution steps of smart contracts

○ We set an upper bound of the remaining amount of the gas, there 
will be no infinite steps to follow, or issues like DoS (Denial of 
Service)

○ We can now get accurate values that a location could take at a 
given program point of stacks / memories / and built-in functions

CFG from Binary Ninja

57



CFG from Binary Ninja

58

Thanks to EthereumJS Monorepo

https://github.com/ethereumjs/ethereumjs-monorepo


CFG from Binary Ninja

59



CFG from Binary Ninja

60



CFG from Binary Ninja

61



● Finally, we give BN these pieces of information via its 
APIs

○ get_instruction_text
■ A list of InstructionTextToken objects for the instruction at 

the given virtual address with data
○ get_instruction_info

■ An InstructionInfo object for the instruction at the given 
virtual address with data

○ get_instruction_low_level_il
■ Appends LowLevelILExpr objects to the il variable for the 

instruction at the given virtual address with data

CFG from Binary Ninja

62



CFG from Binary Ninja

63



Outline

64

● Intro to Blockchain & Web3
● EVM-based Smart Contract Basics
● Reverse Engineering & CFG
● Cases & Futures



Cases & Futures

● SAG? from DEF CON 2018 Quals
○ It gives us a proxy contract

65

https://gist.github.com/gaasedelen/d525e4b90a1702e8bc98b7f148f48daa


Cases & Futures

● SAG? from DEF CON 2018 Quals
○ It gives us a proxy contract to interact with the private contract 

behind

66

https://gist.github.com/gaasedelen/d525e4b90a1702e8bc98b7f148f48daa


Cases & Futures

● SAG? from DEF CON 2018 Quals
○ It gives us a proxy contract to interact with the private contract 

behind
○ All we know is to pass the function: gamble(guess, seed)

67

https://gist.github.com/gaasedelen/d525e4b90a1702e8bc98b7f148f48daa


Cases & Futures

● SAG? from DEF CON 2018 Quals
○ It gives us a proxy contract to interact with the private contract 

behind
○ All we know is to pass the function: gamble(guess, seed)
○ Then, we request the prize

68

https://gist.github.com/gaasedelen/d525e4b90a1702e8bc98b7f148f48daa


Cases & Futures

● SAG? from DEF CON 2018 Quals
○ It gives us a proxy contract to interact with the private contract 

behind
○ All we know is to pass the function: gamble(guess, seed)
○ Then, we request the prize
○ The Sag contract isn’t published and verified, so we reverse it

69

https://gist.github.com/gaasedelen/d525e4b90a1702e8bc98b7f148f48daa
https://ethervm.io/decompile/ropsten/0xa019c785322b921a84d086502da0d0dbdb993fba


Cases & Futures

70



Cases & Futures

● To-dos in the future
○ Make it more “smart-contract-like” in decompilation, not c-like
○ Have a plugin like IDA F.L.I.R.T. Technology

■ Fast Library Identification and Recognition Technology
○ Best-effort to decode the 4-byte signatures

71



References

● REVERSE ENGINEERING A CONTRACT
● Decompiler - how to structure loops
● CS153: Compilers Lecture 23: Static Single Assignment 

Form
● crytic/ethersplay

72

https://ethereum.org/en/developers/tutorials/reverse-engineering-a-contract/
https://stackoverflow.com/questions/27160506/decompiler-how-to-structure-loops
https://groups.seas.harvard.edu/courses/cs153/2018fa/lectures/Lec23-SSA.pdf
https://groups.seas.harvard.edu/courses/cs153/2018fa/lectures/Lec23-SSA.pdf
https://github.com/crytic/ethersplay


THANK
YOU!

73

HAVE
QUESTIONS?

boik.su@cycarrier.com

mailto:boik.su@cycarrier.com

