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○ Web Security / AD Security / Blockchain Security
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○ OWASP Global AppSec / ROOTCON / HITCON
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Distributed Ledger Technology (DLT)

● “Bitcoin”, the first cryptocurrency, was invented in 2008 
by an unknown person or group of people using the 
name Satoshi Nakamoto

● The term “Blockchain” was later invented due to the 
release of the white paper and its fundamental cores, 
Peer-to-Peer Network and Consensus Algorithm

● “DLT” is later named as a category that covers 
technologies like Blockchain, having high levels of 
transparency, integrity and availability in a decentralized 
framework
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Peer-to-Peer Network

● Web 2.0, known as Social Network, focuses on sharing 
data and contents under famous entities such as Google, 
Meta, Apple, …

● Web3, known as Blockchain-empowered Network, 
focuses on the controls of owned data and identities
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Consensus Algorithm

● The most important component of a blockchain that 
ensures the safety of the network

● Participants need to fulfill certain requirements to make 
a transaction

● The mainstream ones
○ PoW (Proof-of-Work)
○ PoS (Proof-of-Stake)
○ PoH (Proof-of-History)
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How does “blockchain” work?
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How does the “network” look like?
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Generations

● 1st Gen: Bitcoin blockchain (Payment System)
● 2nd Gen: Ethereum blockchain (On-chain traditional 

finance)
● Next Gen?

○ IoT (Internet of Things)
○ AI (Artificial Intelligence)

11



Generations

● 1st Gen: Bitcoin blockchain (Payment System)
● 2nd Gen: Ethereum blockchain (On-chain traditional 

finance)
● Next Gen?

○ IoT (Internet of Things)
○ AI (Artificial Intelligence)
○ Superconductor (?
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Ethereum blockchain & Smart Contract

● Ethereum blockchain introduces a new function called 
“Smart Contract”, which is simply a program run on the 
blockchain

● Smart contracts can define rules, like a regular contract, 
and automatically enforce them via the code

● Dapps (Decentralized Apps) have their backend code 
(smart contracts) running on a blockchain like Ethereum 
to ensure decentralization and availability

● “DeFi (Decentralized Finance)” then starts thriving
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Short ver.
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Ethereum VM (Virtual Machine)

● Smart contracts run on EVM (Ethereum VM)
● The EVM executes as a stack machine, and each 

compiled smart contract bytecode executes as a series of 
EVM opcodes like XOR, AND, ADD, SUB, etc

● Each EVM opcode is 1-byte, and therefore, we can have 
256 different opcodes at maximum (142 currently)

● Each programmable computation is intrinsically bounded 
by fees, which is a specific amount of gas
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Hacks in Web3
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Hacks in Web3 (Front-End)
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It’s Web 2.0 things…



Hacks in Web3 (Front-End)
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Hacks in Web3 (Front-End)
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XSS (Cross-Site Scripting)



Hacks in Web3 (Front-End)
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DNS Cache Spoofing



Hacks in Web3 (Front-End)
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UI Spoofing



Hacks in Web3 (Back-End)
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Smart Contract 📜



Hacks in Web3 (Back-End)
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Hacks in Web3 (Back-End)
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Hacks in Web3 (Back-End)
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Reverse Engineering a Contract

● Everything uploaded on the blockchain is consistent, 
verifiable, and publicly available

● For transparency and reputation, some projects will 
disclose their source code on GitHub, Etherscan, etc

● If you want, you can always get a copy of a smart 
contract bytecode even if it’s not open-sourced

● There are no secrets on the blockchain…
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White Box Testing

● Which means that we 
have the source code
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White Box Testing

● Which means that we 
have the source code

● We can take 
advantage of static-
analysis tools to 
easily discover flaws

● Can you spot the vuln?
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Black Box Testing

● You can try “Replay Attack”, which simply means you 
replay the Tx to see if you’re able to reproduce the 
outcome

● Some will also analyze transactions to understand 
internal operations

34



Black Box Testing

● You can try “Replay Attack”, which simply means you 
replay the Tx to see if you’re able to reproduce the 
outcome

● Some will also analyze Txs to understand internal 
operations

● Or, you can reverse smart contracts, and it will give you 
a much clearer view of what smart contracts do actually
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Disassembly

● No matter what compiled binaries we have, it’s a must to 
firstly disassemble machine code into disassembly
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CFG (Control Flow Graph)
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● Why do we need to construct a CFG
1. To have correct executing logics

CFG (Control Flow Graph)
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= ECX * EAX
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● Why do we need to construct a CFG
1. To have correct executing logics
2. To eliminate loops
3. To transform into SSA form and lift to a higher-level abstraction

● Okay, then how do we get our hands dirty in making a 
CFG?

● To make it easy, intermediate-language-based analysis
could make it easy for us (BNIL, P-Code, Microcode, AIL)

CFG (Control Flow Graph)
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CFG (Control Flow Graph)
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● To guide BN to construct a CFG from an unknown 
architecture, we firstly need to convert the machine 
code to the disassembly

CFG from Binary Ninja
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● Secondly, we need to tell BN when to branch out, and 
therefore, BN will construct the CFG for us

CFG from Binary Ninja
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● Secondly, we need to tell BN when to branch out, and 
therefore, BN will construct the CFG for us

○ Having said that, branches information are sometimes hard to be 
deduced

○ VSA (Value Set Analysis) is a static analysis approach that finds an 
over-approximation of the values that a location could take at a 
given program point

○ This can be used to understand the possible targets of indirect 
jumps, or the possible targets of memory / register write 
operations

○ Though it suffers from a lack of accuracy, it’s sound

CFG from Binary Ninja
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● Secondly, we need to tell BN when to branch out, and 
therefore, BN will construct the CFG for us

○ Due to the introduction of the “Gas”, we can simulate every 
execution steps of smart contracts

○ We set an upper bound of the remaining amount of the gas, there 
will be no infinite steps to follow, or issues like DoS (Denial of 
Service)

CFG from Binary Ninja
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● Secondly, we need to tell BN when to branch out, and 
therefore, BN will construct the CFG for us

○ Due to the introduction of the “Gas”, we can simulate every 
execution steps of smart contracts

○ We set an upper bound of the remaining amount of the gas, there 
will be no infinite steps to follow, or issues like DoS (Denial of 
Service)

○ We can now get accurate values that a location could take at a 
given program point of stacks / memories / and built-in functions

CFG from Binary Ninja
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CFG from Binary Ninja
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Thanks to EthereumJS Monorepo

https://github.com/ethereumjs/ethereumjs-monorepo


CFG from Binary Ninja

59



CFG from Binary Ninja

60



CFG from Binary Ninja
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● Finally, we give BN these pieces of information via its 
APIs

○ get_instruction_text
■ A list of InstructionTextToken objects for the instruction at 

the given virtual address with data
○ get_instruction_info

■ An InstructionInfo object for the instruction at the given 
virtual address with data

○ get_instruction_low_level_il
■ Appends LowLevelILExpr objects to the il variable for the 

instruction at the given virtual address with data

CFG from Binary Ninja
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CFG from Binary Ninja
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Cases & Futures

● SAG? from DEF CON 2018 Quals
○ It gives us a proxy contract
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Cases & Futures

● SAG? from DEF CON 2018 Quals
○ It gives us a proxy contract to interact with the private contract 

behind
○ All we know is to pass the function: gamble(guess, seed)
○ Then, we request the prize
○ The Sag contract isn’t published and verified, so we reverse it
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https://ethervm.io/decompile/ropsten/0xa019c785322b921a84d086502da0d0dbdb993fba


Cases & Futures

70



Cases & Futures

● To-dos in the future
○ Make it more “smart-contract-like” in decompilation, not c-like
○ Have a plugin like IDA F.L.I.R.T. Technology

■ Fast Library Identification and Recognition Technology
○ Best-effort to decode the 4-byte signatures
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