
Dragon Slaying Guide
Bug Hunting In

VMware Device 
Virtualization

Jiaqing Huang, Hao Zheng, Zibo Li, Yue Liu

Security Researcher, QI-ANXIN Group

MAIN TRACK 29 AUG

Presenter Notes
演示文稿备注
Good morning, everyone. Thank you for being here today. I’m very excited to have the opportunity to speak on this topic. Today, I'll be sharing our bug hunting journey in vmware device virtualization



Who We Are

Presenter Notes
演示文稿备注
Firstly, I’d like to introduce our team



Who We Are

Jiaqing Huang

Twit ter: @s0duku

Hao Zheng

Twit ter: @zhz__6951

Zibo Li

Twit ter: @zblee_

Yue Liu

Twit ter: @Mr_LiuYue

Presenter Notes
演示文稿备注
My name is Zibo, and I specialize in IoT and virtualization security. And I had the privilege of working with Jia Qing and Zheng Hao who have been key contributors to this work. Unfortunately, they couldn't join us today due to other commitments. However, their contributions are integral to this presentation, and I’ll do my best to represent our work.



Who We Are

TianGong Team of Lengendsec a t  QI-ANXIN Group

• Focuse on vulnerability discovery and exploita t ion

• Target ing a t  Edge Devices / IOT/ OS/ Virtua liza t ion/ Browser, etc

• Works  published in HITB, BlackHat , EuroS&P, Usenix, ACM CCS, etc

• Awarded in GeekPwn, Tianfu Cup, etc Twit ter: @TianGongLab

WeChat : 奇安信天工实验室

Blog:  ht tps :/ / t iangonglab.github.io/ blog/

Presenter Notes
演示文稿备注
We are all working at TianGong Team of Lengendsec at QI-ANXIN Group. Our Team Focuse on vulnerability discovery and exploitation. Our works have been published in HITB, BlackHat, S&P, Usenix and CCS. We are also the winner of GeekPwn and Tianfu Cup. If you are interested in our work, you can follow us, or visit our blog website.






T he Virtualization Hacking Journey 

Presenter Notes
演示文稿备注
OK, lets start the virtualization hacking journey



The Virtualization Hacking Journey 

Leader: Go pick something you interested, do the long-term research.

Whoa, Windows, Linux, Hardware, etc. 
Everything is interesting

Presenter Notes
演示文稿备注
Originally, our team focused on IOT security research, but we plan to expand the scope of our research. 

So, everything start it from our leader told us to pick a traditional software interested most to do research.

Since we didn't have lots of experience with traditional software security, so we had to be prepared for long-term research.

We have lots of target, Windows, Linux, especially their Kernel, also we were interested in lots of things.





The Virtualization Hacking Journey 

Wait ……
Virtualization almost involved each of them to some degree

Presenter Notes
演示文稿备注
We soon found out that virtualization almost involved each of them to some degree




The Virtualization Hacking Journey 
Know nothing about virtualization but decide to challenge the virtual dragon!

Because we want!

Presenter Notes
演示文稿备注
So we finally choose virtualization as our target even we know nothing about it at that time

And we absolutely can learn a lot through research virtualization security.



The Virtualization Hacking Journey 

• Started to research virtua liza t ion security a t  the end of 2022

• Studied from lots  of virtua liza t ion rela ted public cases

• Escaped from the Para llels  Desktop a t  GeekCon 2023

• Reported lots  of VMware Works ta t ion\ ESXi bugs

Presenter Notes
演示文稿备注
Here is the history of our virtualization security research:

We started to research virtualization security at the end of 2022
In the early days, we learned about virtualization technologies by studying public examples
Then we managed to escape Parallels Desktop on GeekCon 2023
And we also reported many bugs to Vmware





The Virtualization Hacking Journey 

• VMware Hypervisor Reverse Engineering

• VMware Virtua liza t ion Architecture

• VMware Device Virtua liza t ion Bug Hunt ing

• USB Virtua liza t ion Bug Hunt ing

• SCSI Virtua liza t ion Bug Hunt ing

Presenter Notes
演示文稿备注
Today, we will take you to look back our VMware Virtualization Bug Hunting Journey, include two parts, VMware Hypervisor Reverse Engineering and Device Virtualization Bug Hunting






VMware Hypervisor Reverse Engineering

Presenter Notes
演示文稿备注
Firstly, we will introduce VMware virtualization architecture to you through reversing engineering of the Vmware Hypervisor. This help us to figure out which code and how they can be influnced by Attacker, and hopefully it will bring a new view to you. OK, let’s go.




VMware Hypervisor Reverse Engineering

Let’s  speed up our reverse engineering! 

• Debug Tricks

• Dynamic Ins t rumenta t ion

• Symbol Recovery

Presenter Notes
演示文稿备注
To reverse such complex system, you can’t just rely on IDA pro.

For VMware hypervisor, we have some recommends to speed up the reverse procedure.

Mainly contains three parts: Debug Tricks, Dynamic Instrumentation Tools and Symbol Recovery Strategies.



VMware Hypervisor Reverse Engineering

• Recommend to debug vmware-vmx.exe under Windows

• “Image File  Execut ion Opt ions” may encounter some problems .

• Add 0xCC to the vmware-vmx.exe binary 

Presenter Notes
演示文稿备注
It’s important for us to debug the vmx initialize process, so we need attach the debugger to the vmx at start.

Normaly, it should be able to do that by config the “Image File Execution Options”, but it won’t be work on vmx.
So we add the breakpoint at the entrypoint of the vmx binary





VMware Hypervisor Reverse Engineering

• Enable the WinDbg Pos tmortem Debugging

• Once you s ta rt  the Gues t  Machine, Windbg will auto a t tach to vmware-vmx.exe

• This  helps  you debug the vmx init ia lize proces s

Presenter Notes
演示文稿备注
Next we should enable the WinDbg Postmortem debugging.

Now, once we start the guest machine, the vmx proccess will crash due to breakpoint, and Windbg will auto attach to it.




VMware Hypervisor Reverse Engineering

• Use dynamic binary ins t rumenta t ion tools  (Frida , etc)

• Tes t  funct ion a rguments  in vmware-vmx.exe proces s

• Trace code execut ion flow 

Presenter Notes
演示文稿备注
Dynamic binary instrumentation can also be useful when you reverse the vmx binary.

You can use Frida to test function arguments, or use it to hook device emulation code, and see it’s execution flow

Something can be traced like Graphic commands and USB commands





VMware Hypervisor Reverse Engineering

• Use open-vm-tools  source code to recover the symbols  of 
some common funct ions

• vmware-vmx-debug.exe conta ins  more log s t ring

Presenter Notes
演示文稿备注
Although vmx binary didn’t has symbol information, but open-vmware-tools shares lots of code with vmx

Especially some general structures and functions, like hash tables, events and async socket





VMware Hypervisor Reverse Engineering

• Learn from the internet

• CVEs

• Hardware documents

• Open source code (QEMU, Linux driver, e tc)

• ……

Presenter Notes
演示文稿备注
Of course, we can learn a lot from the old CVEs, Hardware documents, and even open source code like QEMU, Linux driver

All these can help speed up the reverse engineering



VMware Hypervisor Reverse Engineering

• Well prepared, but  where should we actua lly s ta rt?

• Let’s  loca te the “loop” of vmware-vmx.exe firs t !

Presenter Notes
演示文稿备注
We have prepared well for the reverse engineering, but where exactly should we start?

If you already learned something about hypervisor, there is always a loop that handle switch in and out of virtual machine.

So we will locate the loop code, and start the reverse work.




VMware Hypervisor Reverse Engineering

• vmware-vmx.exe is  usermode proces s

• vmx86.sys  is  respons ible for as s is t ing it

• Trace the DeviceIoControl API to s ee how they communica te 
with each other

Presenter Notes
演示文稿备注
We know that vmx is a usermode process, it should access kernel for switch in, so there should have a kernel module. 

In windows vmware workstation, the kernel module is vmx86.sys. And in ESXi, the vmx just directly communicate with VMKernel.

So we need to pay attention to the interact between kernel and vmx



VMware Hypervisor Reverse Engineering

• Combined with log s t ring to unders tand the meaning of IOCTL 
code

Presenter Notes
演示文稿备注
To understand those IOCTL code, we can combine it with log string in vmx binary

For example, this code in picture should represent the IOCTL_VMX86_RUN_VM which maybe the call to switch in Guest Machine



VMware Hypervisor Reverse Engineering

Presenter Notes
演示文稿备注
By looking for references of this function, we can easily locate the main loop code

You can see that, vmx use IOCTL_RUN_VM switch into virtual machine, and blocked until virtual machine exit to host

Vmx will get the return code and call the corresponding UserRpcHandler to handle the virtual machine request.




VMware Hypervisor Reverse Engineering

• What  is  UserRPC?

• A mechanism des igned for vmm to interact  with vmx

• Similar to Hyperca ll, but  on userspace vmware-vmx.exe

• Conta ins  a  lot  of code rela ted to device emula t ion

• lot  of bugs  tha t  a re found in device emula t ion funct ions  
a re ca lled from rela ted UserRpcHandler

Presenter Notes
演示文稿备注
What is the UserRpc?

It's a mechanism that VMware designed for vmm to interact with vmx on host. 

It is very similar to HyperCall, but in userspace. 


 



VMware Hypervisor Reverse Engineering

• UserRPCHandler only took one param: UserRpcBlock pointer

• UserRpcBlock is  a  SharedArea memory region

Presenter Notes
演示文稿备注
UserRPCHandler will only take one argument which is UserRpcBlock pointer

UserRPCBlock is a SharedArea memory region which is an another mechanism for shared data between vmx and vmm.

So if we want to know what is passed in UserRpcBlock, we should firgure out how the SharedArea works.






VMware Hypervisor Reverse Engineering

• Reverse engineering the SharedArea module

• Analyze the crea t ion and loading proces s  of vmm

• Trace interact ions  between vmware-vmx.exe and vmx86.sys

• Pay a t tent ion to every memory a lloca t ion ca lls

Presenter Notes
演示文稿备注
The implementation of SharedArea is related to the creation and loading of vmm

So we need to start it from the initialization process, and pay more attention to every memory allocation calls

and also remembered to check the interaction between vmx and vmx86 kernel module



VMware Hypervisor Reverse Engineering

Presenter Notes
演示文稿备注
Follow the initial process, 

we will noticed that there is a ELF object called vmmblob embedded in vmx



VMware Hypervisor Reverse Engineering

Presenter Notes
演示文稿备注

There are several vmm extensions stored in vmmmods section of vmmblob

They are also ELF Object.
 



VMware Hypervisor Reverse Engineering

• vmmblob.elf conta ins  lots  of symbols

• Symbols  shared with vmware-vmx.exe and vmx86.sys

• Speed up our work aga in

Presenter Notes
演示文稿备注
Good news is vmmblob contains lots of symbols, and these symbols shared with vmx and vmx86 kernel module

So this can also speed up our work a lot



VMware Hypervisor Reverse Engineering

• ELF linker code within vmware-vmx.exe

• vmm extens ions  s tored in vmmblob’s sect ions  in format  of ELF Object

• vmmblob and vmm extens ions  will be relinked to a  new ELF for vmm in memory 
arcording to ".vmx" configura t ion

Presenter Notes
演示文稿备注
By analyzing these codes, 

We can find that VMX will link the extensions with vmmblob in memory to construct the actual vmm process acording to the user's configuration.





VMware Hypervisor Reverse Engineering

• Found “userRpcBlock” as  predefined export  symbols  in .shared_per_vcpu_vmx
sect ion of the vmmblob for SharedArea

• Some virtua l device implementa t ions  will define the export  symbol in it  too

Presenter Notes
演示文稿备注
Also we found that there are predefined export symbols such as userRpcBlock and the corresponding mapping addresses in the another section.

This is because some virtual devices requiring Shared Memory will need link it too.






VMware Hypervisor Reverse Engineering

• vmx calcula tes  the tota l s ize of SharedArea memories  and a lloca tes  memory

Presenter Notes
演示文稿备注
After these symbols has been defined, vmx will calculate the total size of SharedArea memories and allocate the memory space.

Now we have figured out how shared memory were allocated, but how do vmm access them?



VMware Hypervisor Reverse Engineering

• .hos t_params sect ion of vmmblob conta ins  vmm’s GDT informat ion

Presenter Notes
演示文稿备注
We found that vmmblob has another two specific sections, The one contains the GDT information,




VMware Hypervisor Reverse Engineering

• .monloader sect ion of vmmblob conta ins  vmm’s virtua l addres s  mapping 
informat ion

Presenter Notes
演示文稿备注
And the other one contains the virtual address mapping information.



VMware Hypervisor Reverse Engineering

• vmx is  respons ible for a lloca t ing memory and building page table s t ructures  based 
on vmmblob’s informat ion

• vmx86.sys  further popula tes  the page table informat ion and loads  the vmm ELF file  
cons t ructed by vmx

• vmx, vmmblob, vmx86.sys  work together to build the vmm’s enviroment , mapping 
the hos t  a lloca ted addres s  to vmm’s virtua l addres s

Presenter Notes
演示文稿备注
Combined the information :

vmx allocat memory and building page table structures based on vmmblob’s information.
Vmx86 kernel module gonna further populates the page table information and loads the vmm file which is constructed by vmx.
vmx, vmmblob, vmx86.sys work together to build the vmm running enviroment
When everything prepared, vmm should be able to direct access the memory allocated by SharedArea module




VMware Hypervisor Reverse Engineering

• We also need to figure out  how vmm switch in/ out works if we want  to 
unders tand how vmx and vmm interact  with each other

• CrossPage is  respons ible for s toring context  between vmm and the hos t , like 
VMCS

• Mapped to the virtua l page 0xFFFFFFFFFCA00 of vmm

Presenter Notes
演示文稿备注
Now, we have figured out how SharedArea module works, we still need to figure out how vmm switch works to understand the UserRPC

CrossPage played an important role in vmm switch. It's a one page size memory region used for storing context between vmm and host, just like VMCS in Intel VT






VMware Hypervisor Reverse Engineering

• We can search specia l regis ter 
opera t ion (like cr3) in vmx86.sys  
to loca te key code

• The hos t  is  respons ible for 
s aving the current  CPU s ta te  to 
Cros sPage, including sys tem-
level context  such as  the cr3 
regis ter

Presenter Notes
演示文稿备注
When vmx call IOCTL_RUN_VM, vmx86.sys will save the current CPU state to CrossPage and restore the vmm's CPU state 

And the operation of switch out is on the contrary.







VMware Hypervisor Reverse Engineering

• UserRpc is  implemented through Pla t formUserCall in vmm

• Saves  the opcode to the addres s  0xFFFFFFFFFCA00550

• Place the Pla t formCall invoca t ion number 100  a t  0xFFFFFFFFFCA00428

• These addres ses  a re actua lly offsets  within Cros sPage

Presenter Notes
演示文稿备注
We found that UserRpc is implemented through PlatformUserCall in vmm, 

It saves the UserRpc opcode and the PlatformCall invocation number in the CrossPage.



VMware Hypervisor Reverse Engineering

• Pla t formCall 100 causes  vmx86.sys  to return the opcode saved a t  Cros sPage
offset  0x550 to vmware-vmx.exe

• vmware-vmx.exe ca lls  the corresponding UserRpcHandler based on this  opcode 
number

• UserRpcBlock, it  is  precisely the content  s aved by vmm via  SharedArea , in the 
direct  memory mapping between the hos t  and vmm memory

Presenter Notes
演示文稿备注
When PlatformCall 100 is executed, vmx86.sys will return the UserRpc opcode to vmx.

And then, vmx could call the corresponding UserRpcCallHandler.

Whenever vmm prepare to call UserRpc, you will see vmm modify the userRpcBlock to transfer data to vmx.

These are basicly the implementation about UserRPC, it is the basis for almost every emulation implementation



VMware Hypervisor Reverse Engineering

• vmm resolves  the x86 IO ins t ruct ions , 
and may a t tempt  to use UserRPC(317) 
to ca ll vmx to proces s

Presenter Notes
演示文稿备注
Based on the knowledge, we are able to further reverse enginnering  device Virtualization.

Since we need to analyze the data flow between Guest and Hypervisor, we need to figure out the IO emulation.

For port IO, vmm will resolve the IO instruction, and attempt to use the UserRPC to call vmx to finish the process.





VMware Hypervisor Reverse Engineering

• Part  of port  IO ca llbacks  a re regis tered in usermode vmware-vmx.exe

• UserRPC(317) Handler respons ible for ca lling corresponding the port  IO ca llback

Presenter Notes
演示文稿备注
In vmx, port IO callbacks have been registered 

As the code in the page UserRPC 317(mentioned in the last page) will call the port IO callback






VMware Hypervisor Reverse Engineering

• Some devices  implement  their IOCallback in vmm, not  in vmx

Presenter Notes
演示文稿备注
Note that Not all the port IO callback registered in vmx

there are also some devices implement their IOCallback in vmm.





VMware Hypervisor Reverse Engineering

• For memory-mapped I/ O (MMIO), 
in mos t  cases , vmx associa tes  the 
memory regions  with a  specific ID, 
linking them to corresponding 
MemHandler funct ions  in vmm by 
default

Presenter Notes
演示文稿备注
For MMIO, in most cases, vmx assoicates the memory region with a specific ID, and the callback function defined in vmm.





VMware Hypervisor Reverse Engineering

• Most  MMIO will acces s  the SharedArea in 
vmm to interact  with vmx

Presenter Notes
演示文稿备注
They may access SharedArea to transfer data to vmx

So we need to read the code in vmm to figure out what happend when access the mmio region in Guest Machine.





VMware Hypervisor Reverse Engineering

• Most  MMIO opera t ions  ult imately s t ill rely 
on UserRpc to ca ll the relevant  proces s ing 
rout ines  in vmx

• That  is  why we say UserRPC handle lots  of 
device emula t ion

Presenter Notes
演示文稿备注
Most mmio operations in vmm will call UserRpc to handle device emulation

 
That’s why we said UserRPC handle lots of device emulations





VMware Hypervisor Reverse Engineering

• The representa t ion object  of gues t  phys ica l memory is  obta ined based on the 
phys ica l addres s

• Depending on the object 's  type, direct  memory acces s  within vmx is   usua lly used

Presenter Notes
演示文稿备注
Physicals memory access is another important IO operator we need to analyze. 

We will not discuss too much about the memory mapping structure, but we should mention that on Windows, the main guest memory is mmapped as file, defferently on ESXi mapped by VMkernel.

When vmx get the physical memory region object, It will check the type first, and directly access the pointer field mostly.





VMware Hypervisor Reverse Engineering

Presenter Notes
演示文稿备注
Overall, this graph described the results of our Vmware Hypervior analysis.



VMware Hypervisor Reverse Engineering

• In ESXi, some devices ’ MMIO will not  a lways  
ca ll UserRPC

• Some devices  will ca ll UserRPC only when 
“hos tedEmula t ion” is  enabled

Presenter Notes
演示文稿备注
It is worth mentioning that there are some differences in ESXi. We found that some virtual devices's mmio will not always call UserRPC. 

Only if the hostedEmulation option is true. 





VMware Hypervisor Reverse Engineering

• vmkcall - vmm direct  ca ll to VMKernel to 
handle devices  emula t ion

Presenter Notes
演示文稿备注
Instead of using UserRpc to interact with vmx, they use vmkcall to direct call VMKernel to handle device Emulation

So although vmx are identical on ESXi and Worksation, but virtual device emulation code won't always be the same by default.




VMware Hypervisor Reverse Engineering

• We can expla in lots  of s t ructure in vmx
through ana lyzing vmm

• vmm can a lso be the s cope of our research for 
vulnerabilit ies

• We found new hypervisor rela ted binary 
module - VMKernel through ana lyzing vmm

Presenter Notes
演示文稿备注
Through the reverse engineering of vmm, we not only figured out lots of structures in vmx but also confirmed that the scope of our research for vulnerabilities

And in particular, we found a new hypervisor module could be attacked – which is named VMKernel






VMware Hypervisor Reverse Engineering

• Main binary modules  rela ted to Vmware hypervisor

• vmware-vmx.exe/ vmx (ESXi)

• vmmblob.elf (vmm)

• VMKernel (ESXi)

• Bugs  in them poss ibly influence Hos t

Presenter Notes
演示文稿备注
These three are the main binary modules we need to concern when hunting bugs in VMware virtualization

Bugs in them possibly influence the Host





VMware Device Virtualization Bug Hunting

Presenter Notes
演示文稿备注
Let's entering the second part, VMware Device Virtulization Bug Hunting



VMware Device Virtualization Bug Hunting

• The s t ra tegies  of Bug Hunt ing

• Automated ana lys is

• Fuzzing

• Manual ana lys is

• Reverse Engineering

Presenter Notes
演示文稿备注
Generally, there are two type of strategies of vulnerability discovery process

We try to do the automated analysis by fuzzing the target device and manual analysis by reverse the device implementation





VMware Device Virtualization Bug Hunting

• In-proces s  fuzzing

• Use Frida  to direct  ca ll ta rget  funct ion

• Use Sta lker to get  coverage informat ion

• Drawbacks

• DBI is  very s low, a lmos t  can not  run the Gues t  Machine normally

• May be influenced by other thread or globa l variable

• POC won’t  direct ly work in Gues t  Machine

Presenter Notes
演示文稿备注

For fuzzing, we tried two solutions.
Firstly, we tried to find some functions suitable for fuzzing.
We using Frida to call the target function and use stalker to get coverage information.
However the DBI is very slow, and the function may be influenced by other thread or global variable.
Even worse is that the testcase poc may not work, because there maybe other checks in real execution flow.



VMware Device Virtualization Bug Hunting

• Direct ly input  tes tcases  from Gues t  OS to virtua l devices

• Hook funct ions  to get  corpus

• Use s ta t ic binary ins t rumenta t ion to get  coverage

• Direct ly t rans fer tes tcases  through phys ica l memory

• Drawbacks

• Coverage informat ion may not  be accura te

• Need to ana lyze the driver code

Presenter Notes
演示文稿备注
The second solution, We tried to input the testcases from the Guest OS to virtual devices directly to accelerate the transmission of testcases.
And we can hook function from Guest OS inside to get corpus and use binary instrumentation to collect coverage information
There are also some drawbacks like coverage information may not be accurate, because the Guest OS itself may also trigger the code
And This requires to figure out how to access the device so that we need to read lots of device specification, or driver’s code. 



VMware Device Virtualization Bug Hunting

• We t ried a  lot , but  end up nothing

• Need to improve the muta t ion s t ra tegies

• Require lots  of effort s  to read devices  documents

Presenter Notes
演示文稿备注
Although we put lots of efforts on fuzzing, but we didn’t get good result

If we want to improve the mutation strategies, we need to write code that meets the specifications of different devices.




VMware Device Virtualization Bug Hunting

• VMware has  many device implementa t ions

• We don't  have much pa t ience to write  fuzzer
according to device documenta t ion

• Since we have read devices  documenta t ion, le t s  
jus t  s ta rt  to manual hunt  bug

Presenter Notes
演示文稿备注

We don’t have much patience to improve our fuzzer

And since we have already read lots of device specifications, so we finally decide to hunt bug manually.



USB Emulation Bug Hunting

Presenter Notes
演示文稿备注
Next, I will talk about the bugs that we found in USB and SCSI Virtualization to introduce the possible source of threat in virtual devices.



VMware Device Virtualization Bug Hunting

• USB Hos t  Cont roller Emula t ion

• UHCI, EHCI, XHCI

• VUSB Emula t ion

• Urb Object , Pipe Object , Port  Object  ... 

• VUSB Backend Device Emula t ion

• Generic, Bluetooth, Rng ... 

Presenter Notes
演示文稿备注
Basically we can divide the USB emulation into three parts

USB Host Controller Emulation
VUSB Emulation
VUSB Backend Device Emulation.




VMware Device Virtualization Bug Hunting

Presenter Notes
演示文稿备注
When guest want to access the usb device, it will write data into memory and access the Host controller mmio space
Which will triggle the vmm handles the mmio access, calling the crossponding UserRpcCall Handler in VMX
Then it will convert  the data into URB object and eventually processed by backend usb device.
And If it try to access the usb device plugged in Host machine finally, there will need another service to help.




CVE - 2024 - 22255 - Uninitialized Memory

Presenter Notes
演示文稿备注
The first bug is in the Host Controller part, and It is an uninitilizaed Memmory bug.




CVE - 2024 - 22255 - Uninitialized Memory

• One of the payloads  used by USB devices  
is  the Standard Device Reques t , which 
begins  in the format  of Setup Packet

• “wLength” is  the mos t  interes t ing fields , 
which indica tes  the length of da ta  
reques ted to the USB device

Presenter Notes
演示文稿备注
In the Transmission Control Protocol, USB devices accept multiple types of requests, one of which is Standard Device Request. The request packet begins in the format of Setup Packet.
So it will contains 8 bytes at least, and it has a field named wlength indicates the length of subsequent data.




CVE - 2024 - 22255 - Uninitialized Memory

• The Standard Device Reques t  s erves  as  the 
payload for USB devices

• USB hos t  cont rollers  do not  t rans fer da ta  
based on this  unit

• For UHCI, da ta  is  t rans ferred in unit s  of 
Trans fer Descriptors  (TDs) and linked in 
gues t  memory in a  lis t - like s t ructure known 
as  Queue Head (QH)

Presenter Notes
演示文稿备注
The Standard Device Request serves as the payload for USB devices. However, the host controller do not transfer data based on this unit.

For example, in UHCI, data is transfered in units of Transfer Descriptors.





CVE - 2024 - 22255 - Uninitialized Memory

• When proces s ing cont rol t rans fers , VMware 's  UHCI cont roller a lloca tes  URB 
objects  on a  per-Standard Device Reques t  bas is

• VMware ret rieves  the firs t  TD on the Queue Head (QH) and uses  it  as  the s ta rt ing 
point  to parse the Setup Packet

• It  ext racts  the “wLength” field from the Setup Packet  and adds  the s ize of the 
Setup Packet  to determine the s ize of the da ta  buffer for the URB object

Presenter Notes
演示文稿备注
When vmx handles the UHCI emulation, It retrives the first TD on Queue Head, extract the wLength field from Setup Packet

and use this size to determine the size of data buffer for URB object.




CVE - 2024 - 22255 - Uninitialized Memory

Presenter Notes
演示文稿备注
After allocation finished, it will copy the data into URB object. 

and They do lots of check to prevent buffer overflow.





CVE - 2024 - 22255 - Uninitialized Memory

• The a lloca t ion proces s  of URB depends  on the ta rget  device you are t rans ferring to

• Different  types  of backend USB devices  will result  in URB objects  with varying priva te 
s t ructures

Presenter Notes
演示文稿备注
Look back to the process, we found that different types of backend USB devices will result in URB objects with varying private structures. And the URB objects could be controlled.





CVE - 2024 - 22255 - Uninitialized Memory

• For HID devices , when a lloca t ing URB objects , no addit iona l s t ructures  a re added 
bes ides  the generic da ta  fields  of the URB

• Addit iona lly, HID devices  ut ilize malloc for da ta  a lloca t ion

Presenter Notes
演示文稿备注
For example, HID device will allocating URB object without addtional fields besides the data buffer of the URB

Also, HID device will use malloc for data allocation



CVE - 2024 - 22255 - Uninitialized Memory

• Alloca t ing wLength s ized URB doesn't  mean 
you will get  wLength s ized da ta  from gues t  
supplied TDs

• Malloc a lloca t ion left  memory uninit ia lized

• Backend USB device returns  da ta  through 
the s ame URB buffer, leading to a  heap da ta  
leak

Presenter Notes
演示文稿备注
There are some problems here

Allocating wlength size URB dosen't mean you will get wLength size data from guest supplied TDs

Malloc allocation left memory uninitilized

Also Backend Usb Device will return data use the same URB buffer

so it will eventually leading the heap data leaked to the Guest



CVE - 2024 - 22252 - Use After Free

Presenter Notes
演示文稿备注
The second bug is Use After Free appeared in VUsb Emulation code



CVE - 2024 - 22252 - Use After Free

• Device Slot  Context  

• Element  0  points  to a  Slot  Context  s t ructure, which 
holds  informat ion for the device

• Endpoint  Context  

• An Endpoint  Context  s t ructure holds  context  
informat ion for a  s ingle  endpoint

• Trans fer Ring 

• Each endpoint  has  one or more Trans fer Rings . A 
Trans fer Ring is  an a rray of Trans fer Reques t  Blocks  
(TRBs)

Presenter Notes
演示文稿备注
In XHCI there is a structure called device context which stores the usb device status
It is constructed by Device Slot Context and Endpoint Context
Device slot context holds usb device information
Endpoint Context holds information for a single endpoint
Also Each endpoint has one or more Transfer Rings
There are Transfer Request Blocks on the Transfer Rings and xhci transfer data based on these structures



CVE - 2024 - 22252 - Use After Free

• Look back to the old bug -
CVE-2021-22040

• Before you figure out  the 
XHCI emula t ion code, you 
may be confused

Presenter Notes
演示文稿备注
In order to explain this bug, we need to look back an old bug in 2021


It only alters the sequence between the calls to release Transfer Ring and the code that assign values to Endpoint Context.






CVE - 2024 - 22252 - Use After Free

Presenter Notes
演示文稿备注
Let’s first firgue out how Transfer Ring release works.
First it will get Transfer Ring Object from the Endpoint Context.
Then it will retrieves the VUsbDeviceObject based on the USB port number saved in the Device Slot Context.
And then it will obtains the VUsbPipeObject from the VUsbDeviceObject based on Endpoint ID.
After that, it will release all the URB object on that VUsbPipeObject
Finnally, the Transfer Ring Object will be released



CVE - 2024 - 22252 - Use After Free
• Release the URB objects on Backend USB Device

Presenter Notes
演示文稿备注
Also, it will release the possible URB object on Backend USB Device, in case there may be dangling pointer on backend Usb Devcie.





CVE - 2024 - 22252 - Use After Free

• Endpoint  Context  is  not  the only object  tha t  holds  a  Trans fer Ring Object   
pointer

• URB Object  a lso holds  a  pointer tha t  points  to a  field for Trans fer Ring Object

• This  field is  respons ible for t racking the corresponding TRB’s  da ta  on 
Trans fer Ring Object  when XHCI returns  USB device responses  to the Gues t

Presenter Notes
演示文稿备注
It's seems no problems here.

However, it's actually not the URB object could become dangling pointer

It is because that the Transfer Ring Object pointer is not only hold by Endpoint Context

URB Object also holds a pointer that point to a field of Transfer Ring Object

And this field is responsible for tracking the corresponding Transfer Ring Object when XHCI return the USB device response to the Guest



CVE - 2024 - 22252 - Use After Free
• Before pa tch, XHCI commands  like 'Configure Endpoint ' could modify the contents  of 

the Endpoint  Context  before releas ing the Trans fer Ring

• 'Configure Endpoint ' could modify the contents  of the Endpoint  Context , leading the 
type mismatch with the VUsbPipeObject object  type

Presenter Notes
演示文稿备注

Before the patch

XHCI command like "Configure Endpoint" could modify the Endpoint context contents before releaseing the transfer ring

So it may lead to the type stored in Endpoint Context mismatch the VUsbPipeObject type





CVE - 2024 - 22252 - Use After Free
• Left  URB Object  not  freed, but  rela ted Trans fer Ring Object  a lready freed

• Dangling pointer - Use After Free

Presenter Notes
演示文稿备注

This will cause the function return without a VUsbPipeobject,

Left urb object on that VusbPipeOject not be freed.

and the previous pointer now becomes Dangling pointer and casuing user after free!

Bow our question is, after the patch, Is it possible to make the VUsbPipeObject mismatch again?





CVE - 2024 - 22252 - Use After Free
• It  is  s t ill pos s ible to modify the Device Slot  Context  to ret rieve another VUsbDeviceObject , 

leading to the inability to obta in the correct  VUsbPipeObject

Presenter Notes
演示文稿备注
We know vmx will need check the port number stored in Slot Context to find the VUSBDeviceObject

If we can modify the port number, it may cause vmx find a wrong VUSBDeviceObject, so if in that case,

It will also find a wrong VUsbPipeObject





CVE - 2024 - 22252 - Use After Free
• Firs t  complete the configura t ion proces s  for a  device, and crea te Trans fer Rings  on 

non-Control Endpoints

• Trans fer URB da ta  on those Trans fer Rings

• Use the 'ADDRESS_DEVICE' command on tha t  Device Slot  to modify the Device Port  
Number in the Slot  Context  to point  to another USB device

• VMware 's  implementa t ion ensures  tha t  'ADDRESS_DEVICE' does  not  a ffect  other non-
Control Endpoint  Contexts

Presenter Notes
演示文稿备注
We do have ADDRESS_DEVICE command can make this possible

You can see the ADDRESS_DEVICE command only modify the Slot Context and Control Endpoint Context





CVE - 2024 - 22252 - Use After Free

Presenter Notes
演示文稿备注

So first we finish a device configuration processs, and we create the Transfer Ring on non-Control Endpoint

Then we tranfer URB data on those Transfer Rings

In the end, we use the 'ADDRESS_DEVICE' command on that Device to modify the Device Port Number

Now if we try to release transfer ring on that endpoint, it will failed to find the right VUsbPipeObject and causing UAF again.

This is a bug happens between Host controller and VUSB emulation, and the root cause is that it fails to manage the object life time in VUSB emulation





CVE - 2024 - 22251 - Out - of - Bounds Read

Presenter Notes
演示文稿备注
The third bug is in the Usb Backend Device Emulation.

and it is a Out-of-bound Read vulnerability that will be triggered within the system API.




CVE - 2024 - 22251 - Out - of - Bounds Read

• The Gues t  OS communicates  with SmartCard
through the Virtua l SmartCard Reader

• Gues t  OS use CCID protocol to communicate 
with Virtua l SmartCard Reader

• The APDU (Applica t ion Protocol Data  Unit ) 
s erves  as  the da ta  unit  for interact ion between 
the SmartCard Reader and the SmartCard

Presenter Notes
演示文稿备注

The Guest OS Communicate with SmartCard through the Virtual SmartCard Reader. 
Guest OS use CCID protocol to communicate with Virtual SmartCard Reader
The APDU serves as the payload for interaction between the SmartCard Reader and the SmartCard
Their relationship is  similar to the Host Controller and the Usb Device.
You may already seen that both data structure has length field



CVE - 2024 - 22251 - Out - of - Bounds Read

• VMware checks  whether the 'msg_len' field 
of ccid_xfrblock_msg_hdr matches  the 'len' 
field of the command_apdu

• However, it  fa ils  to verify whether these two 
fields  conform to the s ize of the URB buffer

Presenter Notes
演示文稿备注
Such length fields always need to be careful handled

VMware do checks whether the msg_len field of ccid protocol match the len field of command_apdu.

But, it fails to verify whether these two field conform to the size of URB buffer.





CVE - 2024 - 22251 - Out - of - Bounds Read

• Direct ly uses  these fields  as  parameters  to ca ll the Windows  SCardTransmit API

• SCardTransmit takes  a  buffer pointer and buffer s ize as  parameters  and cannot  verify the 
va lidity between these two parameters

• Out-of Bounds  Access  to Heap Data

Presenter Notes
演示文稿备注
It Directly uses these fields as arguments to call the Windows SCardTransmit API.

Clearly, SCardTransmit can not check whether the length match the data buffer.

So it will Out-Of Bounds Access to Heap Data, and write it to SmartCard on your host.

Also we may be able to read it back, so it's a kind of interesting.





Conclusion
• Hos t  cont roller emula t ion can be a t tacked

• VUSB emula t ion can be a t tacked

• USB device emula t ion can be a t tacked

• We have other cases  we did not  include in this  presenta t ion, but  you can differ the vmx binary to 
found

• More a t tack s cenarios  in the future?

• Plug in an evil USB device and leverage vmx (Generic USB device, ...) to execute code? 

• Leverage loca l USB service (usbarbit ra tor, ...) to privilege esca la t ion?

• ……

• Very challenging to defend such a  complex sys tem

Presenter Notes
演示文稿备注

In Conlusion:
Host controller emulation, VUSB emulation, and USB device emulation all could be attacked.
And we still have more cases.

Besides maybe more attack scenarios in the future: For example,
Maybe plug in a evil USB device and leverage vmx to execute code?
Or Leverage Local Usb service to privilege escalation?
It's very challenge to defend such complex system



SCSI Emulation Bug Hunting

Presenter Notes
演示文稿备注
Ok next, let's start the SCSI part 




Differences Between ESXi And Workstation

● The da ta  flow direct ion of device emula t ion in ESXi is  different  from tha t  in 
Works ta t ion

Presenter Notes
演示文稿备注
As mentioned earlier, ESXi has a new attack surface that is different from Workstation – you know VMKernel

This difference is very obvious in the SCSI code

Next, I will show you this difference in SCSI in detail



SCSI Emulation Architecture

Presenter Notes
演示文稿备注
This is an overview of the SCSI data flow. You can see that there are two paths for writing data to the disk, one through VMKernel and one through VMX.

These are two completely different code paths, belonging to ESXi and Workstation respectively.



SCSI Data Flow Transmission Direction

● Transmis s ion of SCSI da ta  s t ream in Works ta t ion 

Presenter Notes
演示文稿备注
The specific code path of SCSI in Workstation is shown in the figure

If the user calls the MPI_FUNCTION_ SCSI_IO_REQUEST command, it will enter the "LSILogicImpl ProcessSCSIIOMessage" function, where it will confirm whether their environment is HostedEmulation



SCSI Data Flow Transmission Direction

● Transmis s ion of SCSI da ta  s t ream in Works ta t ion 

Presenter Notes
演示文稿备注
Finally, the "LSILogic HostedProcessSCSIIOMessage" function calls the relevant Handler in VMX through UserRpc



SCSI Data Flow Transmission Direction

● Transmis s ion of SCSI da ta  s t ream in ESXi

Presenter Notes
演示文稿备注
The specific code path of SCSI in ESXi is shown in the figure

ESXi divides the situation into whether the environment itself is in hostedEmulation

If it is hostedEmulation, it will be the same as the Workstation path. Otherwise, it goes to "LSILogicVMKProcessSCSIIOMessage“

Go to VMKernel through "VMK_Call_Args"



SCSI Data Flow Transmission Direction

● Different  code pa ths  present  different  a t tack surfaces

ESXi Workst
ation

Presenter Notes
演示文稿备注
Because of this small code gap, ESXi has a new attack surface that Workstation does not have.

Next, I will introduce the vulnerabilities We found on those two different paths.



CVE - 2024 - 22273 - Out - of - Bounds Read/Write

Presenter Notes
演示文稿备注
The first vulnerability we will talk about is located in VMX, and the official description is Out-of-bounds read/write vulnerability



CVE - 2024 - 22273 - Out - of - Bounds Read/Write

● The disk verifier is  respons ible for detect ing 
whether the disk has  bad sectors

● VMware implements  a  disk verifier 
mechanism

Presenter Notes
演示文稿备注
As a tool for storing data, stability is the most critical and basic requirement for disks.

VMware implements corresponding disk verification capabilities in device emulation

One of the disk verification capabilities is to detect data corruption through Checksum. This is where the vulnerability occurs.



CVE - 2024 - 22273 - Out - of - Bounds Read/Write

● The Write(16) command can write  da ta  to the specified 64-bit  addres s

Presenter Notes
演示文稿备注
Before we start, let's first introduce a SCSI command.

In the SCSI Commands Reference Manual, there is a command called write(16) that allows the operation of 8-byte Logical Block Address and 4-byte Transfer Length.

This shows that we can use this command to access any address in the all 64(sixty four)-bit space, provided there is no disk capacity limit check



CVE - 2024 - 22273 - Out - of - Bounds Read/Write

● Normally, the acces s  range of a  “Write” or “Read” command is  limited according to the 
disk capacity

Presenter Notes
演示文稿备注
VMware did not implement the disk capacity limit check in its disk verification program implementation.

As can be seen in the figure, after applying for a heap of the corresponding size according to the disk capacity, only the operation is checked to see if it is a read or write operation.




CVE - 2024 - 22273 - Out - of - Bounds Read/Write

● The “Write(16)” command can be used to write  any da ta  to any addres s

Presenter Notes
演示文稿备注
Obviously, this is a heap overflow

The write(16) and other read and write commands in the SCSI Commands Reference Manual allow us to access any 8-byte address.

This allows us to easily perform arbitrary read and write operations.



CVE - 2024 - 37086 - Out - of - Bounds Read

Presenter Notes
演示文稿备注

The vulnerability we will discuss next is located in VMKernel, and the official description is Out-of-bounds read



CVE - 2024 - 37086 - Code Path to VMKernel

● The “UNMAP” command a llows  one or more Logica l Block Addres ses  to be unmapped

Presenter Notes
演示文稿备注
Still start with the SCSI Commands Reference Manual, there is a command called unmap, which can unmap one or more LBAs(Logical Block Addresses).



CVE - 2024 - 37086 - Out - of - Bounds Read

Presenter Notes
演示文稿备注
The structure of UNMAP itself is relatively complex, and is divided into three parts: UNMAP Command, UNMAP parameter list, and UNMAP block descriptor.

Let's first look at the structure definition of UNMAP Command, The focus of the figure is PARAMETER LENGTH, which indicates the total length of the unmap parameter data.



CVE - 2024 - 37086 - Out - of - Bounds Read

Presenter Notes
演示文稿备注
The UNMAP parameter list is divided into two parts: UNMAP parameter list header and UNMAP block descriptor data

The UNMAP parameter list header consists of three fields: UNMAP DATA LENGTH, UNMAP BLOCK DESCRIPTOR DATA LENGTH, and Reserved.



CVE - 2024 - 37086 - Out - of - Bounds Read

Presenter Notes
演示文稿备注
The UNMAP block descriptor consists of two fields: UNMAP LOGICAL BLOCK ADDRESS and NUMBER OF LOGICAL BLOCKS.

These two fields indicate the starting address and length of the block that the user wants to UNMAP.



CVE - 2024 - 37086 - Out - of - Bounds Read

Presenter Notes
演示文稿备注
This is an overview of the three UNMAP structures, so that everyone can easily understand the structure of the UNMAP command.

The three structures are very closely related, and we will focus on Parameter List Length and Unmap Block Descriptor Data Length.

Both fields indicate the length. Unmap Block Descriptor Data Length indicates the length of all subsequent Unmap Block Descriptors.

Parameter List Length includes not only the length of all Unmap Block Descriptors but also the length of the UNMAP parameter list header.



CVE - 2024 - 37086 - Out - of - Bounds Read

● Verify before us ing the “UNMAP” command

Presenter Notes
演示文稿备注
Let's see the VMware implementation.

Before actually running the UNMAP command, the "VSCSI_CheckUnmapCmd" function will be entered first.



CVE - 2024 - 37086 - Out - of - Bounds Read

● Verify before us ing the “UNMAP” command

Presenter Notes
演示文稿备注
In this function, a heap of the corresponding size is requested according to the Parameter List Length, and all the UNMAP data is copied to the heap.



CVE - 2024 - 37086 - Out - of - Bounds Read

● Forget t ing to check the correla t ion between “Parameter Lis t  Length” and “Unmap
Block Descriptor Data  Length”

Presenter Notes
演示文稿备注
After the UNMAP data is copied, the content of the data will be checked.

But it forgets to check the relationship between Parameter List Length and Unmap Block Descriptor Data Length, and the number of UNMAP block descriptors is determined based on the Unmap Block Descriptor Data Length.

The user can set a special Parameter List to carry a large number of Unmap Block Descriptors, but only check the first Unmap Block Descriptor.



CVE - 2024 - 37086 - Out - of - Bounds Read

● Use “Parameter Lis t  Length” as  the length

Presenter Notes
演示文稿备注
After completing the check, enter the actual use stage

According to the code in the figure, parameter list Length is used as the boundary length, which allows the previously unchecked Unmap Block Descriptor to be put into use




CVE - 2024 - 37086 - Out - of - Bounds Read

● Size variables  a re a ffected by “Logica l Block Size”

● Unchecked “Logica l Block Size” will cause Out-of-bound write

Presenter Notes
演示文稿备注
The unchecked Logical Block Size is used as the Size variable in the code shown in the figure.

An obvious out-of-bounds write

In fact, it is out-of-bounds write that actually causes the crash, not the so-called out-of-bounds read



New Attack Surface Impact

● Modify the exis t ing sandbox protect ion mechanism

● Elevate the current  proces s  privileges

● Virtua l Machine Escape

Presenter Notes
演示文稿备注
Regarding the new attack surface of VMKernel, I have summarized the following major impacts:
• It can Modify the existing sandbox protection mechanism

• and it can help us to Elevate the current process privileges and help finish the

• Virtual Machine Escaping



Thank You!

Presenter Notes
演示文稿备注
1、Exploitation in VMware ESXi/workstation is very difficult， and you know Memory corruption exploits are usually unstable
2、One of the vulnerabilities has been used in practice to complete the exploitation in Tianfu Cup by other team, and I think Exploitation details will not be made public
3、There is no good solution yet
4、Most people also do targeted fuzzing on a certain device.
5、I believe new technologies such as LLM will help improve.
6、The new attack surface is more hard to exploit than others, and it provides us with a new entry point.
7、I think you need to figure out how the addresses are mapped, and then leak them layer by layer.
8、It’s a interesting question, but its beyond the scope of my research. Id like to put you in touch with another author of this topic, who has done a lot of work in this area. Im sure he would like to discuss more with you.


	Dragon Slaying Guide�Bug Hunting In�VMware Device Virtualization
	Who We Are
	Who We Are
	Who We Are
	The Virtualization Hacking Journey 
	The Virtualization Hacking Journey 
	The Virtualization Hacking Journey 
	The Virtualization Hacking Journey 
	The Virtualization Hacking Journey 
	The Virtualization Hacking Journey 
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Hypervisor Reverse Engineering
	VMware Device Virtualization Bug Hunting
	VMware Device Virtualization Bug Hunting
	VMware Device Virtualization Bug Hunting
	VMware Device Virtualization Bug Hunting
	VMware Device Virtualization Bug Hunting
	VMware Device Virtualization Bug Hunting
	USB Emulation Bug Hunting
	VMware Device Virtualization Bug Hunting
	VMware Device Virtualization Bug Hunting
	CVE-2024-22255 - Uninitialized Memory
	CVE-2024-22255 - Uninitialized Memory
	CVE-2024-22255 - Uninitialized Memory
	CVE-2024-22255 - Uninitialized Memory
	CVE-2024-22255 - Uninitialized Memory
	CVE-2024-22255 - Uninitialized Memory
	CVE-2024-22255 - Uninitialized Memory
	CVE-2024-22255 - Uninitialized Memory
	CVE-2024-22252 - Use After Free
	CVE-2024-22252 - Use After Free
	CVE-2024-22252 - Use After Free
	CVE-2024-22252 - Use After Free
	CVE-2024-22252 - Use After Free
	CVE-2024-22252 - Use After Free
	CVE-2024-22252 - Use After Free
	CVE-2024-22252 - Use After Free
	CVE-2024-22252 - Use After Free
	CVE-2024-22252 - Use After Free
	CVE-2024-22252 - Use After Free
	CVE-2024-22251 - Out-of-Bounds Read
	CVE-2024-22251 - Out-of-Bounds Read
	CVE-2024-22251 - Out-of-Bounds Read
	CVE-2024-22251 - Out-of-Bounds Read
	Conclusion
	SCSI Emulation Bug Hunting
	Differences Between ESXi And Workstation
	SCSI Emulation Architecture
	SCSI Data Flow Transmission Direction
	SCSI Data Flow Transmission Direction
	SCSI Data Flow Transmission Direction
	SCSI Data Flow Transmission Direction
	CVE-2024-22273 - Out-of-Bounds Read/Write
	CVE-2024-22273 - Out-of-Bounds Read/Write
	CVE-2024-22273 - Out-of-Bounds Read/Write
	CVE-2024-22273 - Out-of-Bounds Read/Write
	CVE-2024-22273 - Out-of-Bounds Read/Write
	CVE-2024-37086 - Out-of-Bounds Read
	CVE-2024-37086 - Code Path to VMKernel
	CVE-2024-37086 - Out-of-Bounds Read
	CVE-2024-37086 - Out-of-Bounds Read
	CVE-2024-37086 - Out-of-Bounds Read
	CVE-2024-37086 - Out-of-Bounds Read
	CVE-2024-37086 - Out-of-Bounds Read
	CVE-2024-37086 - Out-of-Bounds Read
	CVE-2024-37086 - Out-of-Bounds Read
	CVE-2024-37086 - Out-of-Bounds Read
	CVE-2024-37086 - Out-of-Bounds Read
	New Attack Surface Impact
	Thank You!

