
Discovering and
Investigating Propagated
Vulnerabilities from
Ethereum to Its Layer-2
Blockchains

Dr. Daoyuan Wu

Research Assistant Professor, HKUST

TRACK 1 30 AUG

Ethereum is the most popular blockchain
for hosting smart contracts
Crowdfunded and Development begun in 2014.

The PoW (Proof-of-Work) network went live on 30 July 2015.

Switched to PoS (Proof-of-Stake) on 26 Feb 2023.

More than 2B (2,487,725,064 as of Aug 26) transactions sent.

More than 1M (1,344,143 as of Aug 26) token contracts created.

Ethereum’s smart contract language, Solidity, appears in Top Programming Languages 2024.

2

Ethereum is also quite decentralized

3

Ethereum suffers from low throughput
and expensive transaction fees

Ethereum currently has only 14.3 TPS (transactions per second).
The transaction fee is now around 1USD in the bear market but was high in the past.

4

Third-party layer-2 blockchain
networks have emerged in recent years

5

They copy & customize Ethereum

6

They copy & customize Ethereum

7

The architecture between Ethereum
and its layer-2 blockchain networks

8

Ethereum

EVM

Source: arXiv:2310.03616

Our Tool: BlockScope
A novel patch-based clone detection tool for propagated vulnerabilities in
forked blockchain projects.

9

1. Leverage patch code contexts to locate only potentially relevant code

2. Adopt similarity-based code match for being immune to clone variants

1 AssertLockHeld(cs_main);

2 assert(pindex);

3 assert((pindex->phashBlock == nullptr) ||

4 (*pindex->phashBlock == block.GetHash()));

5 int64_t nTimeStart = GetTimeMicros();

6 - if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))

7 + if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck)) {

8 + if (state.CorruptionPossible()) {

9 + return AbortNode(state, “Corrupt block found ...");

10 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

11 uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

12 assert(hashPrevBlock == view.GetBestBlock());

13 if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

14 if (!fJustCheck)

10

Context-based Candidate Clone Search

1 bool ConnectBlock(const CBlock& block, CValidationState& state, ...,

2 CCoinsViewCache& view, const CChainParams& chainparams, bool fJustCheck)

3 AssertLockHeld(cs_main);

4 const Consensus::Params& consensus = Params().GetConsensus(pindex->nHeight);

5 int64_t nTimeStart = GetTimeMicros();

6 if (!CheckBlock(block, state, !fJustCheck, !fJustCheck))

7 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

8 uint256 hashPrevBlock = pindex->pprev == NULL ? uint256() : ...;

9 assert(hashPrevBlock == view.GetBestBlock());

10 if (block.GetHash() == Params().GetConsensus(0).hashGenesisBlock) {

11 if (!fJustCheck)

Source patch code hunk from Bitcoin Target candidate code hunk from DogecoinUP context

DOWN context

AssertLockHeld(cs_main);

assert((pindex->phashBlock == nullptr) ||

(*pindex->phashBlock == block.GetHash()));

int64_t nTimeStart = GetTimeMicros();

return error("%s: Consensus::CheckBlock: %s", __func__, ...);

uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

assert(hashPrevBlock == view.GetBestBlock());

if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

if (!fJustCheck)

int64_t nTimeStart = GetTimeMicros();

assert(hashPrevBlock == view.GetBestBlock());

Leverage git grep to find ks in target repo

AssertLockHeld(cs_main);

int64_t nTimeStart = GetTimeMicros();

return error("%s: Consensus::CheckBlock: %s", __func__, ...);

if (!fJustCheck)

const Consensus::Params& consensus = Params().GetConsensus(pindex->nHeight);

uint256 hashPrevBlock = pindex->pprev == NULL ? uint256() : ...;

assert(hashPrevBlock == view.GetBestBlock());

if (block.GetHash() == Params().GetConsensus(0).hashGenesisBlock) {

Determine the boundary ss and es by similarity

start statement (ss)

start statement (ss)

end statement (es) & key statement (ks)

end statement (es)

key statement (ks)

if (!CheckBlock(block, state, !fJustCheck, !fJustCheck))

11

A New Way of Calculating Code Similarity

• Source code S with p statements and target code T with q statements.
• 1. Pair-up each statement in S with the most similar statement in T, i.e.,

o∀𝑖 ∈ [1, 𝑝], find j, s.t., 𝑗 = !"#"$
%&'(%)strsim(𝑆* , 𝑇#).

• 2. Multiply strsim(𝑆!, 𝑇") by a reward factor 𝑟 ∈ 0,1 , i.e.,
strsim 𝑆!, 𝑇" 𝑟 !#" :
o 𝑟 *+, indicates: the greater 𝑖 − 𝑗 the smaller the similarity between 𝑆* and 𝑇,.

• 3. Add up all the weighted similarities and normalize into [0,1], i.e.,
o SIMILARITY 𝑆, 𝑇 = !

-
∑*.!
- strsim(𝑆* , 𝑇,)𝑟 *+, .

1 AssertLockHeld(cs_main);

2 assert(pindex);

3 assert((pindex->phashBlock == nullptr) ||

4 (*pindex->phashBlock == block.GetHash()));

5 int64_t nTimeStart = GetTimeMicros();

6 - if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck))

7 + if (!CheckBlock(block, state, chainparams.GetConsensus(), !fJustCheck, !fJustCheck)) {

8 + if (state.CorruptionPossible()) {

9 + return AbortNode(state, “Corrupt block found ...");

10 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

11 uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : ...;

12 assert(hashPrevBlock == view.GetBestBlock());

13 if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {

14 if (!fJustCheck)

1 AssertLockHeld(cs_main);

2 const Consensus::Params& consensus = Params().GetConsensus(pindex->nHeight);

3 int64_t nTimeStart = GetTimeMicros();

6 if (!CheckBlock(block, state, !fJustCheck, !fJustCheck))

7 return error("%s: Consensus::CheckBlock: %s", __func__, ...);

8 uint256 hashPrevBlock = pindex->pprev == NULL ? uint256() : ...;

9 assert(hashPrevBlock == view.GetBestBlock());

10 if (block.GetHash() == Params().GetConsensus(0).hashGenesisBlock) {

11 if (!fJustCheck)

Source patch code hunk from Bitcoin UP context

DOWN context

start statement (ss)

start statement (ss)

end statement (es) & key statement (ks)

end statement (es)

key statement (ks)

Leverage git grep to find ks in target repo

𝒑 ≠ 𝒒 issue

code ordering issue

S p=5 T
q=3

12

BlockScope vs. State-of-the-art Tools

ReDeBug
[SP’12]

VUDDY
[SP’17]

MVP
[Usenix’20]

BlockScope
Context-based code search (to speed up)
Similarity-based code match (to cover more vulns)

VGraph
[EuroSP’20]

Hash tokenized contexts
Cannot detect Type-2

Add variable abstraction
Cannot detect Type-3 More “program analysis”

This path: to generate better “hashes” (generic and more accurate)

Our path: do not use “hash” the basic unit
but design a better way to calculate their “similarity”

Patch-
based

code clone
detection

Language
Dependent

Hash-based “exact” code matching for the basic unit

Language
Agnostic

Original Vuln Code Type-2 Clone
Type-3 Clone

13

Detection Results (32 Patches from BTC & 6->19 from
ETH)

14

The Breakdown for Three Clone Types
• Type-1&3 clones occupy

95.5% of all the cases.

• BlockScope accuracy:
oType-1: 100%;
oType-2: 80%;
oType-3: 85.7%.

• ReDeBug accuracy:
oType-1: 85.7%;
oType-2: 0%;
oType-3: 26.8%.

TABLE III: The experimental result of BlockScope.

(a) The accuracy and performance comparison between BlockScope and ReDeBug.

Forked Project LOC BlockScope ReDeBug
TP FN TN FP Time TP FN TN FP Time

Dogecoin 326.9K 16 - 15 1 7.6s 7 9 15 1 12.5s
Bitcoin Cash 607.1K 1 - 30 1 10.5s - 1 31 - 22.2s

Litecoin 423.3K 6 - 26 - 8.3s 5 1 26 - 16.4s
Bitcoin SV 221.1K 11 1 18 2 10.6s 2 10 19 1 9.9s

Dash 380.3K 9 1 22 - 13.9s 7 3 21 1 17.7s
Zcash 199.4K 9 2 19 2 8.4s 1 10 21 - 10.7s

Bitcoin Gold 381.7K 10 1 21 - 8.8s 10 1 21 - 17.4s
Horizen 178.9K 9 2 20 1 7.7s 1 10 21 - 12.6s
Qtum 569.0K - - 31 1 12.0s - - 32 - 33.5s

DigiByte 416.3K 10 1 21 - 10.7s 10 1 21 - 15.8s
Ravencoin 504.2K 14 1 16 1 11.4s 10 5 17 - 20.9s

Sum 4.2M 95 9 239 9 109.9s 53 51 245 3 189.6s
(382.6K)* (3.4s)⇧ (5.9s)⇧

Binance 565.3K 1 - 5 - 2.2s - 1 5 - 30.2s
Avalanche 1070.1K - - 6 - 2.5s - - 6 - 55.2s
Polygon 592.0K - - 6 - 2.3s - - 6 - 31.3s

Celo 631.0K 1 - 5 - 2.7s 1 - 5 - 44.5s
Optimism 630.6K 4 - 2 - 3.6s 3 1 2 - 43.3s

Sum 3.5M 6 - 24 - 13.3s 4 2 24 - 204.5s
(697.8K)* (2.2s)⇧ (34.1s)⇧

*: the numbers in (.) of these cells represent the average LOC per project.
⇧: the numbers in (.) of these cells represent the average processing time per patch.

(b) The fixed cases detected by BlockScope.

Forked Project # Fixed Cases
Detected Truth Err*

Dogecoin 1 1 -
Bitcoin Cash 23 25 (2;-)

Litecoin 22 22 -
Bitcoin SV 1 1 -

Dash 11 10 (-;1)
Zcash 2 1 (-;1)

Bitcoin Gold 14 14 -
Horizen 1 - (-;1)
Qtum 28 28 (1;1)

DigiByte 14 14 -
Ravencoin 3 3 -

Sum 120 119 (3;4)

Binance 5 5 -
Avalanche 3 3 -
Polygon 6 6 -

Celo 4 4 -
Optimism 1 1 -

Sum 19 19 -

* represents (the number of missed
cases; the number of mistake cases).

are able to select 32 patches of Bitcoin from June 2017 to
March 2020, including four CVEs. For Ethereum, since its
forks are relatively new, we select six CVEs of Ethereum
since November 2020 as the patches. These 38 patches involve
multiple vulnerability types, including denial-of-service, race
conditions, privacy leakage, and etc. While the number of
Bitcoin and Ethereum vulnerabilities here is not large, we have
to be selective to make sure they are actually vulnerabilities.
Indeed, Bitcoin and Ethereum have a limited number of vul-
nerabilities over the years. For example, the VUDDY dataset
included only 9 CVEs of Bitcoin, with 8 of them already before
2013 and only one after 2018. Moreover, we have 16 popular
forked projects of Bitcoin and Ethereum forked projects to test,
which multiplied the total test cases to 382 (32⇥ 11+ 6⇥ 5).

Environment and tool configuration. We evaluate
BlockScope and ReDeBug on the same virtual machine run-
ning Ubuntu 18.04 with 4GB memory configured, while the
host machine is a Macbook Pro with a 3.5GHz dual-core Intel
Core i7 CPU and 16GB memory. Note that ReDeBug needs
to set a n-gram parameter to adjust the number of lines for
context code. While the default is four, we tried from one to
ten and found that when n-gram=3, ReDeBug achieves its
best result when analyzing our dataset.

B. Accuracy and Performance

After running BlockScope and ReDeBug on the dataset in
Sec. IV-A (i.e., using 32 Bitcoin patches and six Ethereum
patches to test the 16 forked projects) and performing a
thorough code review of all the raw detection results (including
the cases that have no any output), we are able to precisely
obtain the accuracy and performance data for both tools.
Overall, BlockScope detects 101 true vulnerabilities in 13
forked projects (Qtum, Avalanche, and Polygon do not contain
any vulnerability in our dataset as we manually checked),
whereas ReDeBug detects only 57 vulnerabilities in ten forked
projects, which makes BlockScope’s recall 1.8 times higher
than that in ReDeBug. For performance, BlockScope is also

TABLE IV: # of different vulnerability types in each project.

Forked Project Type-1 Type-2 Type-3 Sum
T B;R T B;R T B;R T B;R

Dogecoin 6 (6;4) - - 10 (10;3) 16 (16;7)
Bitcoin Cash 1 (1;-) - - - - 1 (1;-)

Litecoin 5 (5;5) - - 1 (1;-) 6 (6;5)
Bitcoin SV 1 (1;-) - - 11 (10;2) 12 (11;2)

Dash 7 (7;7) - - 3 (2;-) 10 (9;7)
Zcash 1 (1;-) 2 (1;-) 8 (7;1) 11 (9;1)

Bitcoin Gold 9 (9;8) - - 2 (1;2) 11 (10;10)
Horizen - - 2 (2;-) 9 (7;1) 11 (9;1)
Qtum - - - - - - - -

DigiByte 7 (7;7) 1 (1;-) 3 (2;3) 11 (10;10)
Ravencoin 7 (7;7) - - 8 (7;3) 15 (14;10)

Sum 44 (44;38) 5 (4;-) 55 (47;15) 104 (95;53)
Binance - - - - 1 (1;-) 1 (1;-)

Avalanche - - - - - - - -
Polygon - - - - - - - -

Celo 1 (1;1) - - - - 1 (1;1)
Optimism 4 (4;3) - - - - 4 (4;3)

Sum 5 (5;4) - - 1 (1;-) 6 (6;4)

T, B, and R represent: the total number of vulnerabilities of each
clone type, the number of vulnerabilities detected by BlockScope,
and the number of vulnerabilities detected by ReDeBug, respectively.

1.7 times faster than ReDeBug in analyzing Bitcoin’s forked
projects and even 15.4 times faster in analyzing Ethereum’s
forked projects with more code per project.

Table IIIa shows a breakdown of the detailed accuracy and
performance results of BlockScope and ReDeBug, where TP,
FN, TN, and FP represent true positive, false negative, true
negative, and false positive, respectively. According to this
table, we can calculate the precision via TP/(TP + FP)
and the recall via TP/(TP + FN), respectively. We find
that BlockScope achieves good precision and high recall both
at 91.8%. In contrast, while ReDeBug has only three false
positives in our dataset (mainly because it uses the exact
match per code line), its recall is as low as 51.8%. That said,
ReDeBug fails to detect many of the vulnerabilities covered by
BlockScope. Since we aim to perform a thorough investigation
of forked blockchains’ vulnerabilities, BlockScope achieves

8

15

Investigation of Propagated Vulnerabilities

• 41 cases, e.g., CVE-2022-29177, CVE-
2021-41173.

• 25 cases, e.g., CVE-2021-3401, CVE-
2020-26265, CVE-2020-26264, CVE-
2020-26260.

• 44 cases, e.g., Bitcoin PR#16512.

16

Our Limitation
• FP-I: 7 cases, e.g., CVE-2018-

17145, CVE-2019-15947, Bitcoin
PR#12561, Bitcoin PR#14249.

• FP-II: 2 cases, e.g., Bitcoin
PR#12561, Bitcoin PR#13808.

• FN: 9 cases, e.g., Bitcoin
PR#10345, Bitcoin PR#11568,
Bitcoin PR#13907.

17

Vulnerability Report Response
• Reported 110 vulnerabilities

(101 TP + 9 FN);
o 74 positive response;
o CVE-2021-37491 of Dogecoin &

CVE-2021-37492 of Ravencoin
o 1 bug bounty from Binance;

oDogecoin, Ravencoin, Dash,
Bitcoin Gold, Litecoin, and
Binance are the most active
ones;

oBitcoin Cash, DigiByte, and
Optimism did not respond to
any of our reports.

Our vulnerability discovery in
BSC/Optimism/Base/Mantle

18

CVE-2022-29177 in Binance BSC

19

CVE-2022-29177 in Binance BSC

20

A vulnerable node, if configured to use high verbosity logging, can be made to crash when
handling specially crafted p2p messages sent from an attacker node.

The disconnect reason `DiscReason` in `p2p/peer_error.go` is defined as `uint`, which may
lead to a crash when decoding the message at line 343 of `p2p/peer.go`.

A fix is to change the definition of `DiscReason` into `uint8` at line 57 of `p2p/peer_error.go`
and the type of `reason` into `struct{R DiscReason}` at line 340 of `p2p/peer.go`.

https://github.com/bnb-chain/bsc/blob/70d08a5791d0650322e79591ac1fb869df607586/p2p/peer.go
https://github.com/bnb-chain/bsc/blob/70d08a5791d0650322e79591ac1fb869df607586/p2p/peer_error.go
https://github.com/bnb-chain/bsc/blob/70d08a5791d0650322e79591ac1fb869df607586/p2p/peer.go

CVE-2020-26265 in Optimism

21

CVE-2020-26265 in Optimism

22

The problem lies in line 307-311 and line 316 of `l2geth/consensus/ethash/algorithm.go`.
Substitute the `uint32` into `uint64` could fix the issue.

https://github.com/ethereum-%20optimism/optimism/blob/c201f3f1912f60b373d49674c6d92c1a11397f8f/l2geth/consensus/ethash/algorithm.go
https://github.com/ethereum-%20optimism/optimism/blob/c201f3f1912f60b373d49674c6d92c1a11397f8f/l2geth/consensus/ethash/algorithm.go

CVE-2020-26264 in Base

23

It had a DoS vulnerability in LES,
which can make a LES server crash
via a malicious `GetProofsV2`
request from a connected LES
client.

The problem lies in line 595 of
`l2geth/les/server_handler.go`,
where the `header` could
potentially be `nil` and leads to a
panic.

A simple solution is to move line
595 after line 579.

https://github.com/ethereum-optimism/optimism/blob/c201f3f1912f60b373d49674c6d92c1a11397f8f/l2geth/les/server_handler.go

CVE-2021-39137 in Mantle

24

It has a memory corruption vulnerability in EVM,
which can cause a consensus error

Vulnerable nodes obtain a different `stateRoot`
when processing a maliciously crafted
transaction. This, in turn, would lead to the chain
being split into two forks.

The problem lies in four functions, i.e., `opCall`,
`opCallCode`, `opDelegateCall`, and `opStaticCall`
of `core/vm/instructions.go`.

A simple solution is to use `common.CopyBytes`
to copy `ret` safely before use, e.g., add `ret =
common.CopyBytes(ret)` before line 698.

https://github.com/aurorachain-io/go-aoa/blob/b069bc29cfc5959776062a2d2289246188f1dd7f/core/vm/instructions.go

Acknowledgement

25

This work is made possible with my former PhD student, Xiao Yi (now a Researcher at Huawei
HKRC), and Research Assistant, Yuzhou Fang (now a PhD student at USC).

BlockScope is now open-source at https://github.com/VPRLab/BlockScope.

Whitepaper: https://www.ndss-symposium.org/ndss-paper/blockscope.

https://github.com/VPRLab/BlockScope
https://www.ndss-symposium.org/ndss-paper/blockscope

Takeaway

26

introduced our recent efforts to discover how Ethereum’s CVE vulnerabilities could propagate
from Ethereum to BSC/Optimism/Base/Mantle.

Developed BlockScope (https://github.com/VPRLab/BlockScope), a novel search-based
patch vs. code similarity analysis tool for discovering 100+ vulnerabilities in top blockchains.

Analyzed vulnerabilities in BSC/Optimism/Base/Mantle (1 for BSC, 4 for Optimism, and 5 for
Base/Mantle).

https://github.com/VPRLab/BlockScope

Thank you!
Q&A J

Contact: @MagkDao

27

