
One SMS to Root Them All:
Exposing Critical Threats in
Millions of Connected Devices

Alexander Kozlov

Kaspersky ICS CERT

MAIN TRACK 30 AUG

Sergey Anufrienko

Introduction

FW Extraction

MIDlet
Security Analysis

FW
Security Analysis

Conclusions

AGENDA

INTRODUCTION

• Principal security researcher at
Kaspersky ICS CERT

• Has more than 10 years of experience in
reverse engineering of hardware, low-
level firmware, and system software.
Also has professional experience in
cryptography

• As a Senior Lecturer shares knowledge
with students for more than 8 years

OUR TEAM
Alexander Kozlov

• Technology enthusiast and musician,
boasting over two decades of
experience in software engineering,
tinkering with hardware and reverse
engineering

OUR TEAM
Sergey Anufrieko

Areas of application

Previous Research

• Firmware (FW)
• Application (App)
• Java Remote Control (JRC)
• Service LWM2M Agent (SLAE)

● Manufacturer
● User signed / unsigned

What a modem is about?

Application types Code privileges

• It is impossible to determine the
path where MIDlets are stored

• It is impossible to bypass
restrictions preventing reading
or .jar files

● Digital Signature

Security assumptions:
MIDlet

Confidentiality Integrity

Security assumptions: OS

Distributing OS updates only to registered
customers in encrypted form

Confidentiality Integrity

FIRMWARE
EXTRACTION

HW Analysis

HW Analysis

DO NOT USE?
REALLY?

Our own PCB

• LGA re-soldering

• JTAG pins for debug

• AT console

JTAG

• IDCODE: 0x101E3083

• No information about
architecture

• Blackbox fuzzer didn’t
find too much

• No NAND FS stuff

• No crypto

• Defeat errors with
multiple readings

Reading the NAND

What NAND memory is
about?

NAND Translation Analysis

• SA after every single
sector

• Sector size is 0x200

• What if we look at SA
only?

NAND Translation Analysis

• Clear LBN and LSN

• LPN can be dropped

• Linear structure

UFS Reconstruction
• Only few blocks

have data
• Found blocks with

UFS and modem FW

FS Reconstruction

MIDLET SECURITY
ANALYSIS

MIDlets and Modem FS

• Java ME (Micro Edition)
• JAR file with Java code
• JAD file with settings

● Deleted after installation
● Copied to a hidden place

Files from UFS:

MIDlets and Modem FS

Hidden FS: 4 files

● .ss – MIDLet Permissions
● .ii – Service Information
● .ap – JAD Manifest
● .jar – MIDLet Java Bytecode

Hidden FS: 4 files

NO CERTIFICATE CHECK AFTER INSTALLATION!
(CVE-2023-47611)

● .ss – MIDLet Permissions
● .ii – Service Information
● .ap – JAD Manifest
● .jar – MIDLet Java Bytecode

Hidden FS: 4 files

● .ss – MIDLet Permissions
● .ii – Service Information
● .ap – JAD Manifest
● .jar – MIDLet Java Bytecode

Hidden FS: 4 files

● .ss – MIDLet Permissions
● .ii – Service Information
● .ap – JAD Manifest
● .jar – MIDLet Java Bytecode

Public static method
CVE-2023-47615

• Any MIDlet is allowed to call

• Returns a list of all Java
system properties

• Leaks HIDDEN SECRET paths

FTP client
CVE-2023-47612

• Only privileged MIDlets
can R/W the entire UFS

• FTP code is in JRC

• FTP is accessible via AT
commands by any user

Native path traversal
CVE-2023-47613

• A:/ is a UFS root

• B:/ is a hidden UFS root

• Connector.open("file:///root:
/PATH")

• First checks for “../” and only
then converts the escape
sequence to ASCII

Demo: Obtaining vendor-level privileges

Demo: Obtaining vendor-level
privileges

1. Install user MIDlet
2. Run user MIDlet the first time
3. Exploit native path traversal
4. Run MIDlet the second time
5. Profit J

FW SECURITY
ANALYSIS:
AT COMMANDS

AT Commands

• User console is enough
• Need a corpus

• General AT commands
• Vendor AT commands

AT Commands

• So many general AT-
commands

• Most of them have
description

• …and a descriptor

AT Commands

Vendor-specific AT
Commands

● Many vendor commands

● With description and
descriptors again

● Many of them are for
testing only

Vendor-specific AT
Commands

● Many vendor commands

● With description
and descriptors again

● And some of them
are very nice

Vendor-specific AT
Commands

● Some of them work fine

Vendor-specific AT
Commands

● Some of them work fine

● …but some don’t L

Vendor-specific AT
Commands

● Some of them work fine

● …but some don’t L

● We need the SEC key for
them to work… or not? J

Vendor-specific AT
Commands

● More AT functions

Vendor-specific AT
Commands

● More AT functions

● In release FW!

Vendor-specific AT
Commands

But there are other checks

Fuzzing Setup

• Got data about all AT
commands from FW
dump

• Crafted a fuzzing stand

• And waited…

AT command heap
overflow

• Static buffer size

• User-controlled copy size

• Classic heap overflow

FW SECURITY
ANALYSIS:
SUPL

SUPL Overview

SUPL Heap Overflow

SUPL Heap Overflow

SUPL Heap Overflow

• Two different vars for
one purpose

• No checks about
coherence

• Classic heap overflow…
again

SUPL Heap Overflow

• Corrupt next chunk
header

• Every single time

• Why?! OS and heap
manager is so nice

Heap overflow: Exploitation

Expectation Reality

SUPL Heap Overflow: Read
Primitive

● R0 = *(Address from SMS)
● Read R0 via AT+XLOG=0

150 Mb/s

1,5 Mb/s

0,88 b/s

Read Primitive

Read Primitive

SUPL Heap Overflow: write
primitive

• Heap structure is too
primitive

• One pool, many threads

• free() can be exploited to
perform an arbitrary write

SUPL Heap Overflow: Write
Primitive

What makes it heap

Demo

Demo: Unlocking Vendor AT
Commands

• Send SUPL SMS to create some
internal structures

• Trick free() function to
malloc() a blob for our fake
thread

• Overwrite current user level

Unlocking Vendor AT
Commands

• Now we can read memory…

• ….write memory

• …and bypass SEC key security
J

Finding Code Execution
Primitive

• Code section is read only

• But some code executes
dynamically from RAM

• Got code execution in
process manager's context

Unlock Code Section

• Find MMU mapping

• Setup RO sections as
R\W

• So much unmapped
physical memory!

Modem OTAP

● Not activated by default

● Activation is local only

● Operated via SMS

Hidden FS: Otap_AtParams

• Created only upon
AT command
execution

• No file → no OTAP L

• Has file → has OTAP! J

SMS FS

• Inject into SMS Process

• Patch handler to
retrieve our SMS first

• Got our own hidden
data channel into
modem OS

SMS FS

• Create remote API via
SMS

• RE some needed funcs

• Add our FS driver to
the system’s ones

OTAP Activation via SMS

• SUPL SMS Heap Overflow
• Get code execution in process

manager's context
• Unlock code section via MMU
• Patch Operate SMS Process
• Upload new SMS FS driver
• Create OTAP_AtParams
• Send OTAP SMS
• Install our MIDlet

Mitigation guidelines

• Need FW cryptography
• No flat memory model
• OTAP needs verification
• Only telecommunication operator can

help with a working mitigation

CVE list

CVE ID CVSS Score Description

CVE-2023-47610 8.1 (High) CWE-120: Buffer Copy without Checking Size of Input

CVE-2023-47611 7.8 (High) CWE-269: Improper Privilege Management

CVE-2023-47612 6.8 (Medium) CWE-552: Files or Directories Accessible to External Parties

CVE-2023-47613 4.4 (Medium) CWE-23: Relative Path Traversal

CVE-2023-47614 3.3 (Low) CWE-200: Exposure of Sensitive Information to an
Unauthorized Actor

CVE-2023-47615 3.3 (Low) CWE-526: Exposure of Sensitive Information Through
Environmental Variables

Technical Paper

Thank you!
Questions?

Alexander Kozlov

Kaspersky ICS CERT

MAIN TRACK 30 AUG

Sergey Anufrienko
@N0um3n0n

@madprogrammer

