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INTRODUCTION
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• As a Senior Lecturer shares knowledge 
with students for more than 8 years 
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• Technology enthusiast and musician, 
boasting over two decades of 
experience in software engineering, 
tinkering with hardware and reverse 
engineering

OUR TEAM
Sergey Anufrieko



Areas of application



Previous  Research



• Firmware (FW) 
• Application (App)
• Java Remote Control (JRC)
• Service LWM2M Agent (SLAE)

● Manufacturer
● User signed / unsigned

What a modem is about?

Application  types Code privileges



• It is impossible to determine the 
path where MIDlets are stored

• It is impossible to bypass 
restrictions preventing reading 
or .jar files

● Digital Signature

Security assumptions: 
MIDlet

Confidentiality Integrity



Security assumptions: OS

Distributing OS updates only to registered 
customers in encrypted form

Confidentiality Integrity



FIRMWARE
EXTRACTION



HW Analysis



HW Analysis

DO NOT USE?
REALLY?



Our own PCB

• LGA re-soldering

• JTAG pins for debug

• AT console



JTAG

• IDCODE: 0x101E3083

• No information about 
architecture

• Blackbox fuzzer didn’t 
find too much



• No NAND FS stuff

• No crypto 

• Defeat errors with 
multiple readings

Reading the NAND



What NAND memory is 
about?



NAND Translation Analysis

• SA after every single
sector

• Sector size is 0x200

• What if we look at SA
only?



NAND Translation Analysis

• Clear LBN and LSN

• LPN can be dropped

• Linear structure



UFS Reconstruction
• Only few blocks 

have data
• Found blocks with 

UFS and modem FW



FS Reconstruction



MIDLET SECURITY
ANALYSIS



MIDlets and Modem FS

• Java ME (Micro Edition) 
• JAR file with Java code
• JAD file with settings

● Deleted after installation
● Copied to a hidden place

Files from UFS:



MIDlets and Modem FS



Hidden FS: 4 files 

● .ss – MIDLet Permissions
● .ii – Service Information
● .ap – JAD Manifest
● .jar – MIDLet Java Bytecode



Hidden FS: 4 files 

NO CERTIFICATE CHECK AFTER INSTALLATION! 
(CVE-2023-47611)

● .ss – MIDLet Permissions
● .ii – Service Information
● .ap – JAD Manifest
● .jar – MIDLet Java Bytecode



Hidden FS: 4 files 

● .ss – MIDLet Permissions
● .ii – Service Information
● .ap – JAD Manifest
● .jar – MIDLet Java Bytecode



Hidden FS: 4 files 

● .ss – MIDLet Permissions
● .ii – Service Information
● .ap – JAD Manifest
● .jar – MIDLet Java Bytecode



Public static method
CVE-2023-47615

• Any MIDlet is allowed to call

• Returns a list of all Java
system properties

• Leaks HIDDEN SECRET paths



FTP client
CVE-2023-47612

• Only privileged MIDlets 
can R/W the entire UFS

• FTP code is in JRC

• FTP is accessible via AT 
commands by any user



Native path traversal
CVE-2023-47613

• A:/ is a UFS root

• B:/ is a hidden UFS root

• Connector.open("file:///root:
/PATH")

• First checks for “../” and only 
then converts the escape 
sequence to ASCII



Demo: Obtaining vendor-level privileges



Demo: Obtaining vendor-level 
privileges

1. Install user MIDlet
2. Run user MIDlet the first time
3. Exploit native path traversal
4. Run MIDlet the second time
5. Profit J



FW SECURITY
ANALYSIS:
AT COMMANDS



AT Commands

• User console is enough
• Need a corpus 

• General AT commands
• Vendor AT commands



AT Commands

• So many general AT-
commands

• Most of them have 
description

• …and a descriptor



AT Commands



Vendor-specific AT 
Commands

● Many vendor commands

● With description and 
descriptors again

● Many of them are for 
testing only



Vendor-specific AT 
Commands

● Many vendor commands

● With description
and descriptors again

● And some of them
are very nice



Vendor-specific AT 
Commands

● Some of them work fine



Vendor-specific AT 
Commands

● Some of them work fine

● …but some don’t L



Vendor-specific AT 
Commands

● Some of them work fine

● …but some don’t L

● We need the SEC key for 
them to work… or not? J



Vendor-specific AT 
Commands

● More AT functions 



Vendor-specific AT 
Commands

● More AT functions 

● In release FW!



Vendor-specific AT 
Commands

But there are other checks



Fuzzing Setup

• Got data about all AT 
commands from FW 
dump

• Crafted a fuzzing stand

• And waited…



AT command heap 
overflow

• Static buffer size

• User-controlled copy size

• Classic heap overflow



FW SECURITY
ANALYSIS:
SUPL



SUPL Overview



SUPL Heap Overflow



SUPL Heap Overflow



SUPL Heap Overflow

• Two different vars for 
one purpose

• No checks about 
coherence

• Classic heap overflow… 
again



SUPL Heap Overflow

• Corrupt next chunk 
header

• Every single time

• Why?! OS and heap 
manager is so nice



Heap overflow: Exploitation

Expectation Reality



SUPL Heap Overflow: Read 
Primitive

● R0 = *(Address from SMS)
● Read R0 via AT+XLOG=0



150 Mb/s

1,5 Mb/s

0,88 b/s

Read Primitive



Read Primitive



SUPL Heap Overflow: write 
primitive

• Heap structure is too 
primitive

• One pool, many threads

• free() can be exploited to 
perform an arbitrary write



SUPL Heap Overflow: Write 
Primitive



What makes it heap



Demo



Demo: Unlocking Vendor AT 
Commands

• Send SUPL SMS to create some 
internal structures

• Trick free() function to 
malloc()  a blob for our fake 
thread 

• Overwrite current user level 



Unlocking Vendor AT 
Commands

• Now we can read memory…

• ….write memory

• …and bypass SEC key security 
J



Finding Code Execution 
Primitive

• Code section is read only

• But some code executes 
dynamically from RAM

• Got code execution in 
process manager's context



Unlock Code Section

• Find MMU mapping

• Setup RO sections as 
R\W

• So much unmapped 
physical memory!



Modem OTAP

● Not activated by default

● Activation is local only

● Operated via SMS



Hidden FS: Otap_AtParams

• Created only upon
AT command
execution

• No file → no OTAP L

• Has file → has OTAP! J



SMS FS

• Inject into SMS Process

• Patch handler to 
retrieve our SMS first

• Got our own hidden 
data channel into 
modem OS



SMS FS

• Create remote API via 
SMS 

• RE some needed funcs

• Add our FS driver to 
the system’s ones



OTAP Activation via SMS

• SUPL SMS Heap Overflow
• Get code execution in process 

manager's context 
• Unlock code section via MMU
• Patch Operate SMS Process
• Upload new SMS FS driver
• Create OTAP_AtParams
• Send OTAP SMS 
• Install our MIDlet





Mitigation guidelines

• Need FW cryptography
• No flat memory model
• OTAP needs verification 
• Only telecommunication operator can 

help with a working mitigation



CVE list

CVE ID CVSS Score Description

CVE-2023-47610 8.1 (High) CWE-120: Buffer Copy without Checking Size of Input

CVE-2023-47611 7.8 (High) CWE-269: Improper Privilege Management

CVE-2023-47612 6.8 (Medium) CWE-552: Files or Directories Accessible to External Parties

CVE-2023-47613 4.4 (Medium) CWE-23: Relative Path Traversal

CVE-2023-47614 3.3 (Low) CWE-200: Exposure of Sensitive Information to an 
Unauthorized Actor

CVE-2023-47615 3.3 (Low) CWE-526: Exposure of Sensitive Information Through
Environmental Variables



Technical Paper
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